What are the required steps to convert base 10 decimal system
number 115 809 319 029 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 115 809 319 029 ÷ 2 = 57 904 659 514 + 1;
- 57 904 659 514 ÷ 2 = 28 952 329 757 + 0;
- 28 952 329 757 ÷ 2 = 14 476 164 878 + 1;
- 14 476 164 878 ÷ 2 = 7 238 082 439 + 0;
- 7 238 082 439 ÷ 2 = 3 619 041 219 + 1;
- 3 619 041 219 ÷ 2 = 1 809 520 609 + 1;
- 1 809 520 609 ÷ 2 = 904 760 304 + 1;
- 904 760 304 ÷ 2 = 452 380 152 + 0;
- 452 380 152 ÷ 2 = 226 190 076 + 0;
- 226 190 076 ÷ 2 = 113 095 038 + 0;
- 113 095 038 ÷ 2 = 56 547 519 + 0;
- 56 547 519 ÷ 2 = 28 273 759 + 1;
- 28 273 759 ÷ 2 = 14 136 879 + 1;
- 14 136 879 ÷ 2 = 7 068 439 + 1;
- 7 068 439 ÷ 2 = 3 534 219 + 1;
- 3 534 219 ÷ 2 = 1 767 109 + 1;
- 1 767 109 ÷ 2 = 883 554 + 1;
- 883 554 ÷ 2 = 441 777 + 0;
- 441 777 ÷ 2 = 220 888 + 1;
- 220 888 ÷ 2 = 110 444 + 0;
- 110 444 ÷ 2 = 55 222 + 0;
- 55 222 ÷ 2 = 27 611 + 0;
- 27 611 ÷ 2 = 13 805 + 1;
- 13 805 ÷ 2 = 6 902 + 1;
- 6 902 ÷ 2 = 3 451 + 0;
- 3 451 ÷ 2 = 1 725 + 1;
- 1 725 ÷ 2 = 862 + 1;
- 862 ÷ 2 = 431 + 0;
- 431 ÷ 2 = 215 + 1;
- 215 ÷ 2 = 107 + 1;
- 107 ÷ 2 = 53 + 1;
- 53 ÷ 2 = 26 + 1;
- 26 ÷ 2 = 13 + 0;
- 13 ÷ 2 = 6 + 1;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
115 809 319 029(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
115 809 319 029 (base 10) = 1 1010 1111 0110 1100 0101 1111 1000 0111 0101 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.