What are the required steps to convert base 10 decimal system
number 1 111 111 100 000 166 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 111 111 100 000 166 ÷ 2 = 555 555 550 000 083 + 0;
- 555 555 550 000 083 ÷ 2 = 277 777 775 000 041 + 1;
- 277 777 775 000 041 ÷ 2 = 138 888 887 500 020 + 1;
- 138 888 887 500 020 ÷ 2 = 69 444 443 750 010 + 0;
- 69 444 443 750 010 ÷ 2 = 34 722 221 875 005 + 0;
- 34 722 221 875 005 ÷ 2 = 17 361 110 937 502 + 1;
- 17 361 110 937 502 ÷ 2 = 8 680 555 468 751 + 0;
- 8 680 555 468 751 ÷ 2 = 4 340 277 734 375 + 1;
- 4 340 277 734 375 ÷ 2 = 2 170 138 867 187 + 1;
- 2 170 138 867 187 ÷ 2 = 1 085 069 433 593 + 1;
- 1 085 069 433 593 ÷ 2 = 542 534 716 796 + 1;
- 542 534 716 796 ÷ 2 = 271 267 358 398 + 0;
- 271 267 358 398 ÷ 2 = 135 633 679 199 + 0;
- 135 633 679 199 ÷ 2 = 67 816 839 599 + 1;
- 67 816 839 599 ÷ 2 = 33 908 419 799 + 1;
- 33 908 419 799 ÷ 2 = 16 954 209 899 + 1;
- 16 954 209 899 ÷ 2 = 8 477 104 949 + 1;
- 8 477 104 949 ÷ 2 = 4 238 552 474 + 1;
- 4 238 552 474 ÷ 2 = 2 119 276 237 + 0;
- 2 119 276 237 ÷ 2 = 1 059 638 118 + 1;
- 1 059 638 118 ÷ 2 = 529 819 059 + 0;
- 529 819 059 ÷ 2 = 264 909 529 + 1;
- 264 909 529 ÷ 2 = 132 454 764 + 1;
- 132 454 764 ÷ 2 = 66 227 382 + 0;
- 66 227 382 ÷ 2 = 33 113 691 + 0;
- 33 113 691 ÷ 2 = 16 556 845 + 1;
- 16 556 845 ÷ 2 = 8 278 422 + 1;
- 8 278 422 ÷ 2 = 4 139 211 + 0;
- 4 139 211 ÷ 2 = 2 069 605 + 1;
- 2 069 605 ÷ 2 = 1 034 802 + 1;
- 1 034 802 ÷ 2 = 517 401 + 0;
- 517 401 ÷ 2 = 258 700 + 1;
- 258 700 ÷ 2 = 129 350 + 0;
- 129 350 ÷ 2 = 64 675 + 0;
- 64 675 ÷ 2 = 32 337 + 1;
- 32 337 ÷ 2 = 16 168 + 1;
- 16 168 ÷ 2 = 8 084 + 0;
- 8 084 ÷ 2 = 4 042 + 0;
- 4 042 ÷ 2 = 2 021 + 0;
- 2 021 ÷ 2 = 1 010 + 1;
- 1 010 ÷ 2 = 505 + 0;
- 505 ÷ 2 = 252 + 1;
- 252 ÷ 2 = 126 + 0;
- 126 ÷ 2 = 63 + 0;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 111 111 100 000 166(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
1 111 111 100 000 166 (base 10) = 11 1111 0010 1000 1100 1011 0110 0110 1011 1110 0111 1010 0110 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.