What are the required steps to convert base 10 decimal system
number 11 111 101 524 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 11 111 101 524 ÷ 2 = 5 555 550 762 + 0;
- 5 555 550 762 ÷ 2 = 2 777 775 381 + 0;
- 2 777 775 381 ÷ 2 = 1 388 887 690 + 1;
- 1 388 887 690 ÷ 2 = 694 443 845 + 0;
- 694 443 845 ÷ 2 = 347 221 922 + 1;
- 347 221 922 ÷ 2 = 173 610 961 + 0;
- 173 610 961 ÷ 2 = 86 805 480 + 1;
- 86 805 480 ÷ 2 = 43 402 740 + 0;
- 43 402 740 ÷ 2 = 21 701 370 + 0;
- 21 701 370 ÷ 2 = 10 850 685 + 0;
- 10 850 685 ÷ 2 = 5 425 342 + 1;
- 5 425 342 ÷ 2 = 2 712 671 + 0;
- 2 712 671 ÷ 2 = 1 356 335 + 1;
- 1 356 335 ÷ 2 = 678 167 + 1;
- 678 167 ÷ 2 = 339 083 + 1;
- 339 083 ÷ 2 = 169 541 + 1;
- 169 541 ÷ 2 = 84 770 + 1;
- 84 770 ÷ 2 = 42 385 + 0;
- 42 385 ÷ 2 = 21 192 + 1;
- 21 192 ÷ 2 = 10 596 + 0;
- 10 596 ÷ 2 = 5 298 + 0;
- 5 298 ÷ 2 = 2 649 + 0;
- 2 649 ÷ 2 = 1 324 + 1;
- 1 324 ÷ 2 = 662 + 0;
- 662 ÷ 2 = 331 + 0;
- 331 ÷ 2 = 165 + 1;
- 165 ÷ 2 = 82 + 1;
- 82 ÷ 2 = 41 + 0;
- 41 ÷ 2 = 20 + 1;
- 20 ÷ 2 = 10 + 0;
- 10 ÷ 2 = 5 + 0;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
11 111 101 524(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
11 111 101 524 (base 10) = 10 1001 0110 0100 0101 1111 0100 0101 0100 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.