What are the required steps to convert base 10 decimal system
number 111 110 099 837 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 111 110 099 837 ÷ 2 = 55 555 049 918 + 1;
- 55 555 049 918 ÷ 2 = 27 777 524 959 + 0;
- 27 777 524 959 ÷ 2 = 13 888 762 479 + 1;
- 13 888 762 479 ÷ 2 = 6 944 381 239 + 1;
- 6 944 381 239 ÷ 2 = 3 472 190 619 + 1;
- 3 472 190 619 ÷ 2 = 1 736 095 309 + 1;
- 1 736 095 309 ÷ 2 = 868 047 654 + 1;
- 868 047 654 ÷ 2 = 434 023 827 + 0;
- 434 023 827 ÷ 2 = 217 011 913 + 1;
- 217 011 913 ÷ 2 = 108 505 956 + 1;
- 108 505 956 ÷ 2 = 54 252 978 + 0;
- 54 252 978 ÷ 2 = 27 126 489 + 0;
- 27 126 489 ÷ 2 = 13 563 244 + 1;
- 13 563 244 ÷ 2 = 6 781 622 + 0;
- 6 781 622 ÷ 2 = 3 390 811 + 0;
- 3 390 811 ÷ 2 = 1 695 405 + 1;
- 1 695 405 ÷ 2 = 847 702 + 1;
- 847 702 ÷ 2 = 423 851 + 0;
- 423 851 ÷ 2 = 211 925 + 1;
- 211 925 ÷ 2 = 105 962 + 1;
- 105 962 ÷ 2 = 52 981 + 0;
- 52 981 ÷ 2 = 26 490 + 1;
- 26 490 ÷ 2 = 13 245 + 0;
- 13 245 ÷ 2 = 6 622 + 1;
- 6 622 ÷ 2 = 3 311 + 0;
- 3 311 ÷ 2 = 1 655 + 1;
- 1 655 ÷ 2 = 827 + 1;
- 827 ÷ 2 = 413 + 1;
- 413 ÷ 2 = 206 + 1;
- 206 ÷ 2 = 103 + 0;
- 103 ÷ 2 = 51 + 1;
- 51 ÷ 2 = 25 + 1;
- 25 ÷ 2 = 12 + 1;
- 12 ÷ 2 = 6 + 0;
- 6 ÷ 2 = 3 + 0;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
111 110 099 837(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
111 110 099 837 (base 10) = 1 1001 1101 1110 1010 1101 1001 0011 0111 1101 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.