What are the required steps to convert base 10 decimal system
number 11 110 000 111 100 001 136 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 11 110 000 111 100 001 136 ÷ 2 = 5 555 000 055 550 000 568 + 0;
- 5 555 000 055 550 000 568 ÷ 2 = 2 777 500 027 775 000 284 + 0;
- 2 777 500 027 775 000 284 ÷ 2 = 1 388 750 013 887 500 142 + 0;
- 1 388 750 013 887 500 142 ÷ 2 = 694 375 006 943 750 071 + 0;
- 694 375 006 943 750 071 ÷ 2 = 347 187 503 471 875 035 + 1;
- 347 187 503 471 875 035 ÷ 2 = 173 593 751 735 937 517 + 1;
- 173 593 751 735 937 517 ÷ 2 = 86 796 875 867 968 758 + 1;
- 86 796 875 867 968 758 ÷ 2 = 43 398 437 933 984 379 + 0;
- 43 398 437 933 984 379 ÷ 2 = 21 699 218 966 992 189 + 1;
- 21 699 218 966 992 189 ÷ 2 = 10 849 609 483 496 094 + 1;
- 10 849 609 483 496 094 ÷ 2 = 5 424 804 741 748 047 + 0;
- 5 424 804 741 748 047 ÷ 2 = 2 712 402 370 874 023 + 1;
- 2 712 402 370 874 023 ÷ 2 = 1 356 201 185 437 011 + 1;
- 1 356 201 185 437 011 ÷ 2 = 678 100 592 718 505 + 1;
- 678 100 592 718 505 ÷ 2 = 339 050 296 359 252 + 1;
- 339 050 296 359 252 ÷ 2 = 169 525 148 179 626 + 0;
- 169 525 148 179 626 ÷ 2 = 84 762 574 089 813 + 0;
- 84 762 574 089 813 ÷ 2 = 42 381 287 044 906 + 1;
- 42 381 287 044 906 ÷ 2 = 21 190 643 522 453 + 0;
- 21 190 643 522 453 ÷ 2 = 10 595 321 761 226 + 1;
- 10 595 321 761 226 ÷ 2 = 5 297 660 880 613 + 0;
- 5 297 660 880 613 ÷ 2 = 2 648 830 440 306 + 1;
- 2 648 830 440 306 ÷ 2 = 1 324 415 220 153 + 0;
- 1 324 415 220 153 ÷ 2 = 662 207 610 076 + 1;
- 662 207 610 076 ÷ 2 = 331 103 805 038 + 0;
- 331 103 805 038 ÷ 2 = 165 551 902 519 + 0;
- 165 551 902 519 ÷ 2 = 82 775 951 259 + 1;
- 82 775 951 259 ÷ 2 = 41 387 975 629 + 1;
- 41 387 975 629 ÷ 2 = 20 693 987 814 + 1;
- 20 693 987 814 ÷ 2 = 10 346 993 907 + 0;
- 10 346 993 907 ÷ 2 = 5 173 496 953 + 1;
- 5 173 496 953 ÷ 2 = 2 586 748 476 + 1;
- 2 586 748 476 ÷ 2 = 1 293 374 238 + 0;
- 1 293 374 238 ÷ 2 = 646 687 119 + 0;
- 646 687 119 ÷ 2 = 323 343 559 + 1;
- 323 343 559 ÷ 2 = 161 671 779 + 1;
- 161 671 779 ÷ 2 = 80 835 889 + 1;
- 80 835 889 ÷ 2 = 40 417 944 + 1;
- 40 417 944 ÷ 2 = 20 208 972 + 0;
- 20 208 972 ÷ 2 = 10 104 486 + 0;
- 10 104 486 ÷ 2 = 5 052 243 + 0;
- 5 052 243 ÷ 2 = 2 526 121 + 1;
- 2 526 121 ÷ 2 = 1 263 060 + 1;
- 1 263 060 ÷ 2 = 631 530 + 0;
- 631 530 ÷ 2 = 315 765 + 0;
- 315 765 ÷ 2 = 157 882 + 1;
- 157 882 ÷ 2 = 78 941 + 0;
- 78 941 ÷ 2 = 39 470 + 1;
- 39 470 ÷ 2 = 19 735 + 0;
- 19 735 ÷ 2 = 9 867 + 1;
- 9 867 ÷ 2 = 4 933 + 1;
- 4 933 ÷ 2 = 2 466 + 1;
- 2 466 ÷ 2 = 1 233 + 0;
- 1 233 ÷ 2 = 616 + 1;
- 616 ÷ 2 = 308 + 0;
- 308 ÷ 2 = 154 + 0;
- 154 ÷ 2 = 77 + 0;
- 77 ÷ 2 = 38 + 1;
- 38 ÷ 2 = 19 + 0;
- 19 ÷ 2 = 9 + 1;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
11 110 000 111 100 001 136(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
11 110 000 111 100 001 136 (base 10) = 1001 1010 0010 1110 1010 0110 0011 1100 1101 1100 1010 1010 0111 1011 0111 0000 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.