What are the required steps to convert base 10 decimal system
number 1 101 010 110 011 083 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 101 010 110 011 083 ÷ 2 = 550 505 055 005 541 + 1;
- 550 505 055 005 541 ÷ 2 = 275 252 527 502 770 + 1;
- 275 252 527 502 770 ÷ 2 = 137 626 263 751 385 + 0;
- 137 626 263 751 385 ÷ 2 = 68 813 131 875 692 + 1;
- 68 813 131 875 692 ÷ 2 = 34 406 565 937 846 + 0;
- 34 406 565 937 846 ÷ 2 = 17 203 282 968 923 + 0;
- 17 203 282 968 923 ÷ 2 = 8 601 641 484 461 + 1;
- 8 601 641 484 461 ÷ 2 = 4 300 820 742 230 + 1;
- 4 300 820 742 230 ÷ 2 = 2 150 410 371 115 + 0;
- 2 150 410 371 115 ÷ 2 = 1 075 205 185 557 + 1;
- 1 075 205 185 557 ÷ 2 = 537 602 592 778 + 1;
- 537 602 592 778 ÷ 2 = 268 801 296 389 + 0;
- 268 801 296 389 ÷ 2 = 134 400 648 194 + 1;
- 134 400 648 194 ÷ 2 = 67 200 324 097 + 0;
- 67 200 324 097 ÷ 2 = 33 600 162 048 + 1;
- 33 600 162 048 ÷ 2 = 16 800 081 024 + 0;
- 16 800 081 024 ÷ 2 = 8 400 040 512 + 0;
- 8 400 040 512 ÷ 2 = 4 200 020 256 + 0;
- 4 200 020 256 ÷ 2 = 2 100 010 128 + 0;
- 2 100 010 128 ÷ 2 = 1 050 005 064 + 0;
- 1 050 005 064 ÷ 2 = 525 002 532 + 0;
- 525 002 532 ÷ 2 = 262 501 266 + 0;
- 262 501 266 ÷ 2 = 131 250 633 + 0;
- 131 250 633 ÷ 2 = 65 625 316 + 1;
- 65 625 316 ÷ 2 = 32 812 658 + 0;
- 32 812 658 ÷ 2 = 16 406 329 + 0;
- 16 406 329 ÷ 2 = 8 203 164 + 1;
- 8 203 164 ÷ 2 = 4 101 582 + 0;
- 4 101 582 ÷ 2 = 2 050 791 + 0;
- 2 050 791 ÷ 2 = 1 025 395 + 1;
- 1 025 395 ÷ 2 = 512 697 + 1;
- 512 697 ÷ 2 = 256 348 + 1;
- 256 348 ÷ 2 = 128 174 + 0;
- 128 174 ÷ 2 = 64 087 + 0;
- 64 087 ÷ 2 = 32 043 + 1;
- 32 043 ÷ 2 = 16 021 + 1;
- 16 021 ÷ 2 = 8 010 + 1;
- 8 010 ÷ 2 = 4 005 + 0;
- 4 005 ÷ 2 = 2 002 + 1;
- 2 002 ÷ 2 = 1 001 + 0;
- 1 001 ÷ 2 = 500 + 1;
- 500 ÷ 2 = 250 + 0;
- 250 ÷ 2 = 125 + 0;
- 125 ÷ 2 = 62 + 1;
- 62 ÷ 2 = 31 + 0;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 101 010 110 011 083(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
1 101 010 110 011 083 (base 10) = 11 1110 1001 0101 1100 1110 0100 1000 0000 0101 0110 1100 1011 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.