What are the required steps to convert base 10 decimal system
number 1 071 224 905 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 071 224 905 ÷ 2 = 535 612 452 + 1;
- 535 612 452 ÷ 2 = 267 806 226 + 0;
- 267 806 226 ÷ 2 = 133 903 113 + 0;
- 133 903 113 ÷ 2 = 66 951 556 + 1;
- 66 951 556 ÷ 2 = 33 475 778 + 0;
- 33 475 778 ÷ 2 = 16 737 889 + 0;
- 16 737 889 ÷ 2 = 8 368 944 + 1;
- 8 368 944 ÷ 2 = 4 184 472 + 0;
- 4 184 472 ÷ 2 = 2 092 236 + 0;
- 2 092 236 ÷ 2 = 1 046 118 + 0;
- 1 046 118 ÷ 2 = 523 059 + 0;
- 523 059 ÷ 2 = 261 529 + 1;
- 261 529 ÷ 2 = 130 764 + 1;
- 130 764 ÷ 2 = 65 382 + 0;
- 65 382 ÷ 2 = 32 691 + 0;
- 32 691 ÷ 2 = 16 345 + 1;
- 16 345 ÷ 2 = 8 172 + 1;
- 8 172 ÷ 2 = 4 086 + 0;
- 4 086 ÷ 2 = 2 043 + 0;
- 2 043 ÷ 2 = 1 021 + 1;
- 1 021 ÷ 2 = 510 + 1;
- 510 ÷ 2 = 255 + 0;
- 255 ÷ 2 = 127 + 1;
- 127 ÷ 2 = 63 + 1;
- 63 ÷ 2 = 31 + 1;
- 31 ÷ 2 = 15 + 1;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 071 224 905(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
1 071 224 905 (base 10) = 11 1111 1101 1001 1001 1000 0100 1001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.