What are the required steps to convert base 10 decimal system
number 10 203 030 405 060 564 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 10 203 030 405 060 564 ÷ 2 = 5 101 515 202 530 282 + 0;
- 5 101 515 202 530 282 ÷ 2 = 2 550 757 601 265 141 + 0;
- 2 550 757 601 265 141 ÷ 2 = 1 275 378 800 632 570 + 1;
- 1 275 378 800 632 570 ÷ 2 = 637 689 400 316 285 + 0;
- 637 689 400 316 285 ÷ 2 = 318 844 700 158 142 + 1;
- 318 844 700 158 142 ÷ 2 = 159 422 350 079 071 + 0;
- 159 422 350 079 071 ÷ 2 = 79 711 175 039 535 + 1;
- 79 711 175 039 535 ÷ 2 = 39 855 587 519 767 + 1;
- 39 855 587 519 767 ÷ 2 = 19 927 793 759 883 + 1;
- 19 927 793 759 883 ÷ 2 = 9 963 896 879 941 + 1;
- 9 963 896 879 941 ÷ 2 = 4 981 948 439 970 + 1;
- 4 981 948 439 970 ÷ 2 = 2 490 974 219 985 + 0;
- 2 490 974 219 985 ÷ 2 = 1 245 487 109 992 + 1;
- 1 245 487 109 992 ÷ 2 = 622 743 554 996 + 0;
- 622 743 554 996 ÷ 2 = 311 371 777 498 + 0;
- 311 371 777 498 ÷ 2 = 155 685 888 749 + 0;
- 155 685 888 749 ÷ 2 = 77 842 944 374 + 1;
- 77 842 944 374 ÷ 2 = 38 921 472 187 + 0;
- 38 921 472 187 ÷ 2 = 19 460 736 093 + 1;
- 19 460 736 093 ÷ 2 = 9 730 368 046 + 1;
- 9 730 368 046 ÷ 2 = 4 865 184 023 + 0;
- 4 865 184 023 ÷ 2 = 2 432 592 011 + 1;
- 2 432 592 011 ÷ 2 = 1 216 296 005 + 1;
- 1 216 296 005 ÷ 2 = 608 148 002 + 1;
- 608 148 002 ÷ 2 = 304 074 001 + 0;
- 304 074 001 ÷ 2 = 152 037 000 + 1;
- 152 037 000 ÷ 2 = 76 018 500 + 0;
- 76 018 500 ÷ 2 = 38 009 250 + 0;
- 38 009 250 ÷ 2 = 19 004 625 + 0;
- 19 004 625 ÷ 2 = 9 502 312 + 1;
- 9 502 312 ÷ 2 = 4 751 156 + 0;
- 4 751 156 ÷ 2 = 2 375 578 + 0;
- 2 375 578 ÷ 2 = 1 187 789 + 0;
- 1 187 789 ÷ 2 = 593 894 + 1;
- 593 894 ÷ 2 = 296 947 + 0;
- 296 947 ÷ 2 = 148 473 + 1;
- 148 473 ÷ 2 = 74 236 + 1;
- 74 236 ÷ 2 = 37 118 + 0;
- 37 118 ÷ 2 = 18 559 + 0;
- 18 559 ÷ 2 = 9 279 + 1;
- 9 279 ÷ 2 = 4 639 + 1;
- 4 639 ÷ 2 = 2 319 + 1;
- 2 319 ÷ 2 = 1 159 + 1;
- 1 159 ÷ 2 = 579 + 1;
- 579 ÷ 2 = 289 + 1;
- 289 ÷ 2 = 144 + 1;
- 144 ÷ 2 = 72 + 0;
- 72 ÷ 2 = 36 + 0;
- 36 ÷ 2 = 18 + 0;
- 18 ÷ 2 = 9 + 0;
- 9 ÷ 2 = 4 + 1;
- 4 ÷ 2 = 2 + 0;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
10 203 030 405 060 564(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
10 203 030 405 060 564 (base 10) = 10 0100 0011 1111 1001 1010 0010 0010 1110 1101 0001 0111 1101 0100 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.