What are the required steps to convert base 10 decimal system
number 101 101 001 011 225 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 101 101 001 011 225 ÷ 2 = 50 550 500 505 612 + 1;
- 50 550 500 505 612 ÷ 2 = 25 275 250 252 806 + 0;
- 25 275 250 252 806 ÷ 2 = 12 637 625 126 403 + 0;
- 12 637 625 126 403 ÷ 2 = 6 318 812 563 201 + 1;
- 6 318 812 563 201 ÷ 2 = 3 159 406 281 600 + 1;
- 3 159 406 281 600 ÷ 2 = 1 579 703 140 800 + 0;
- 1 579 703 140 800 ÷ 2 = 789 851 570 400 + 0;
- 789 851 570 400 ÷ 2 = 394 925 785 200 + 0;
- 394 925 785 200 ÷ 2 = 197 462 892 600 + 0;
- 197 462 892 600 ÷ 2 = 98 731 446 300 + 0;
- 98 731 446 300 ÷ 2 = 49 365 723 150 + 0;
- 49 365 723 150 ÷ 2 = 24 682 861 575 + 0;
- 24 682 861 575 ÷ 2 = 12 341 430 787 + 1;
- 12 341 430 787 ÷ 2 = 6 170 715 393 + 1;
- 6 170 715 393 ÷ 2 = 3 085 357 696 + 1;
- 3 085 357 696 ÷ 2 = 1 542 678 848 + 0;
- 1 542 678 848 ÷ 2 = 771 339 424 + 0;
- 771 339 424 ÷ 2 = 385 669 712 + 0;
- 385 669 712 ÷ 2 = 192 834 856 + 0;
- 192 834 856 ÷ 2 = 96 417 428 + 0;
- 96 417 428 ÷ 2 = 48 208 714 + 0;
- 48 208 714 ÷ 2 = 24 104 357 + 0;
- 24 104 357 ÷ 2 = 12 052 178 + 1;
- 12 052 178 ÷ 2 = 6 026 089 + 0;
- 6 026 089 ÷ 2 = 3 013 044 + 1;
- 3 013 044 ÷ 2 = 1 506 522 + 0;
- 1 506 522 ÷ 2 = 753 261 + 0;
- 753 261 ÷ 2 = 376 630 + 1;
- 376 630 ÷ 2 = 188 315 + 0;
- 188 315 ÷ 2 = 94 157 + 1;
- 94 157 ÷ 2 = 47 078 + 1;
- 47 078 ÷ 2 = 23 539 + 0;
- 23 539 ÷ 2 = 11 769 + 1;
- 11 769 ÷ 2 = 5 884 + 1;
- 5 884 ÷ 2 = 2 942 + 0;
- 2 942 ÷ 2 = 1 471 + 0;
- 1 471 ÷ 2 = 735 + 1;
- 735 ÷ 2 = 367 + 1;
- 367 ÷ 2 = 183 + 1;
- 183 ÷ 2 = 91 + 1;
- 91 ÷ 2 = 45 + 1;
- 45 ÷ 2 = 22 + 1;
- 22 ÷ 2 = 11 + 0;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
101 101 001 011 225(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
101 101 001 011 225 (base 10) = 101 1011 1111 0011 0110 1001 0100 0000 0111 0000 0001 1001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.