Convert 101 101 001 011 225 to Unsigned Binary (Base 2)

See below how to convert 101 101 001 011 225(10), the unsigned base 10 decimal system number to base 2 binary equivalent

What are the required steps to convert base 10 decimal system
number 101 101 001 011 225 to base 2 unsigned binary equivalent?

  • A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.

1. Divide the number repeatedly by 2:

Keep track of each remainder.

Stop when you get a quotient that is equal to zero.


  • division = quotient + remainder;
  • 101 101 001 011 225 ÷ 2 = 50 550 500 505 612 + 1;
  • 50 550 500 505 612 ÷ 2 = 25 275 250 252 806 + 0;
  • 25 275 250 252 806 ÷ 2 = 12 637 625 126 403 + 0;
  • 12 637 625 126 403 ÷ 2 = 6 318 812 563 201 + 1;
  • 6 318 812 563 201 ÷ 2 = 3 159 406 281 600 + 1;
  • 3 159 406 281 600 ÷ 2 = 1 579 703 140 800 + 0;
  • 1 579 703 140 800 ÷ 2 = 789 851 570 400 + 0;
  • 789 851 570 400 ÷ 2 = 394 925 785 200 + 0;
  • 394 925 785 200 ÷ 2 = 197 462 892 600 + 0;
  • 197 462 892 600 ÷ 2 = 98 731 446 300 + 0;
  • 98 731 446 300 ÷ 2 = 49 365 723 150 + 0;
  • 49 365 723 150 ÷ 2 = 24 682 861 575 + 0;
  • 24 682 861 575 ÷ 2 = 12 341 430 787 + 1;
  • 12 341 430 787 ÷ 2 = 6 170 715 393 + 1;
  • 6 170 715 393 ÷ 2 = 3 085 357 696 + 1;
  • 3 085 357 696 ÷ 2 = 1 542 678 848 + 0;
  • 1 542 678 848 ÷ 2 = 771 339 424 + 0;
  • 771 339 424 ÷ 2 = 385 669 712 + 0;
  • 385 669 712 ÷ 2 = 192 834 856 + 0;
  • 192 834 856 ÷ 2 = 96 417 428 + 0;
  • 96 417 428 ÷ 2 = 48 208 714 + 0;
  • 48 208 714 ÷ 2 = 24 104 357 + 0;
  • 24 104 357 ÷ 2 = 12 052 178 + 1;
  • 12 052 178 ÷ 2 = 6 026 089 + 0;
  • 6 026 089 ÷ 2 = 3 013 044 + 1;
  • 3 013 044 ÷ 2 = 1 506 522 + 0;
  • 1 506 522 ÷ 2 = 753 261 + 0;
  • 753 261 ÷ 2 = 376 630 + 1;
  • 376 630 ÷ 2 = 188 315 + 0;
  • 188 315 ÷ 2 = 94 157 + 1;
  • 94 157 ÷ 2 = 47 078 + 1;
  • 47 078 ÷ 2 = 23 539 + 0;
  • 23 539 ÷ 2 = 11 769 + 1;
  • 11 769 ÷ 2 = 5 884 + 1;
  • 5 884 ÷ 2 = 2 942 + 0;
  • 2 942 ÷ 2 = 1 471 + 0;
  • 1 471 ÷ 2 = 735 + 1;
  • 735 ÷ 2 = 367 + 1;
  • 367 ÷ 2 = 183 + 1;
  • 183 ÷ 2 = 91 + 1;
  • 91 ÷ 2 = 45 + 1;
  • 45 ÷ 2 = 22 + 1;
  • 22 ÷ 2 = 11 + 0;
  • 11 ÷ 2 = 5 + 1;
  • 5 ÷ 2 = 2 + 1;
  • 2 ÷ 2 = 1 + 0;
  • 1 ÷ 2 = 0 + 1;

2. Construct the base 2 representation of the positive number:

Take all the remainders starting from the bottom of the list constructed above.

101 101 001 011 225(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:

101 101 001 011 225 (base 10) = 101 1011 1111 0011 0110 1001 0100 0000 0111 0000 0001 1001 (base 2)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.


How to convert unsigned integer numbers (positive) from decimal system (base 10) to binary = simply convert from base 10 to base 2

Follow the steps below to convert a base ten unsigned integer number to base two:

  • 1. Divide repeatedly by 2 the positive integer number that has to be converted to binary, keeping track of each remainder, until we get a QUOTIENT that is equal to ZERO.
  • 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above. Thus, the last remainder of the divisions becomes the first symbol (the leftmost) of the base two number, while the first remainder becomes the last symbol (the rightmost).

Example: convert the positive integer number 55 from decimal system (base ten) to binary code (base two):

  • 1. Divide repeatedly 55 by 2, keeping track of each remainder, until we get a quotient that is equal to zero:
    • division = quotient + remainder;
    • 55 ÷ 2 = 27 + 1;
    • 27 ÷ 2 = 13 + 1;
    • 13 ÷ 2 = 6 + 1;
    • 6 ÷ 2 = 3 + 0;
    • 3 ÷ 2 = 1 + 1;
    • 1 ÷ 2 = 0 + 1;
  • 2. Construct the base 2 representation of the positive integer number, by taking all the remainders starting from the bottom of the list constructed above:
  • 55(10) = 11 0111(2)
  • Number 5510, positive integer (no sign), converted from decimal system (base 10) to unsigned binary (base 2) = 11 0111(2)