What are the required steps to convert base 10 decimal system
number 1 009 983 528 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 1 009 983 528 ÷ 2 = 504 991 764 + 0;
- 504 991 764 ÷ 2 = 252 495 882 + 0;
- 252 495 882 ÷ 2 = 126 247 941 + 0;
- 126 247 941 ÷ 2 = 63 123 970 + 1;
- 63 123 970 ÷ 2 = 31 561 985 + 0;
- 31 561 985 ÷ 2 = 15 780 992 + 1;
- 15 780 992 ÷ 2 = 7 890 496 + 0;
- 7 890 496 ÷ 2 = 3 945 248 + 0;
- 3 945 248 ÷ 2 = 1 972 624 + 0;
- 1 972 624 ÷ 2 = 986 312 + 0;
- 986 312 ÷ 2 = 493 156 + 0;
- 493 156 ÷ 2 = 246 578 + 0;
- 246 578 ÷ 2 = 123 289 + 0;
- 123 289 ÷ 2 = 61 644 + 1;
- 61 644 ÷ 2 = 30 822 + 0;
- 30 822 ÷ 2 = 15 411 + 0;
- 15 411 ÷ 2 = 7 705 + 1;
- 7 705 ÷ 2 = 3 852 + 1;
- 3 852 ÷ 2 = 1 926 + 0;
- 1 926 ÷ 2 = 963 + 0;
- 963 ÷ 2 = 481 + 1;
- 481 ÷ 2 = 240 + 1;
- 240 ÷ 2 = 120 + 0;
- 120 ÷ 2 = 60 + 0;
- 60 ÷ 2 = 30 + 0;
- 30 ÷ 2 = 15 + 0;
- 15 ÷ 2 = 7 + 1;
- 7 ÷ 2 = 3 + 1;
- 3 ÷ 2 = 1 + 1;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
1 009 983 528(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
1 009 983 528 (base 10) = 11 1100 0011 0011 0010 0000 0010 1000 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.