What are the required steps to convert base 10 decimal system
number 100 001 110 137 to base 2 unsigned binary equivalent?
- A number written in base ten, or a decimal system number, is a number written using the digits 0 through 9. A number written in base two, or a binary system number, is a number written using only the digits 0 and 1.
1. Divide the number repeatedly by 2:
Keep track of each remainder.
Stop when you get a quotient that is equal to zero.
- division = quotient + remainder;
- 100 001 110 137 ÷ 2 = 50 000 555 068 + 1;
- 50 000 555 068 ÷ 2 = 25 000 277 534 + 0;
- 25 000 277 534 ÷ 2 = 12 500 138 767 + 0;
- 12 500 138 767 ÷ 2 = 6 250 069 383 + 1;
- 6 250 069 383 ÷ 2 = 3 125 034 691 + 1;
- 3 125 034 691 ÷ 2 = 1 562 517 345 + 1;
- 1 562 517 345 ÷ 2 = 781 258 672 + 1;
- 781 258 672 ÷ 2 = 390 629 336 + 0;
- 390 629 336 ÷ 2 = 195 314 668 + 0;
- 195 314 668 ÷ 2 = 97 657 334 + 0;
- 97 657 334 ÷ 2 = 48 828 667 + 0;
- 48 828 667 ÷ 2 = 24 414 333 + 1;
- 24 414 333 ÷ 2 = 12 207 166 + 1;
- 12 207 166 ÷ 2 = 6 103 583 + 0;
- 6 103 583 ÷ 2 = 3 051 791 + 1;
- 3 051 791 ÷ 2 = 1 525 895 + 1;
- 1 525 895 ÷ 2 = 762 947 + 1;
- 762 947 ÷ 2 = 381 473 + 1;
- 381 473 ÷ 2 = 190 736 + 1;
- 190 736 ÷ 2 = 95 368 + 0;
- 95 368 ÷ 2 = 47 684 + 0;
- 47 684 ÷ 2 = 23 842 + 0;
- 23 842 ÷ 2 = 11 921 + 0;
- 11 921 ÷ 2 = 5 960 + 1;
- 5 960 ÷ 2 = 2 980 + 0;
- 2 980 ÷ 2 = 1 490 + 0;
- 1 490 ÷ 2 = 745 + 0;
- 745 ÷ 2 = 372 + 1;
- 372 ÷ 2 = 186 + 0;
- 186 ÷ 2 = 93 + 0;
- 93 ÷ 2 = 46 + 1;
- 46 ÷ 2 = 23 + 0;
- 23 ÷ 2 = 11 + 1;
- 11 ÷ 2 = 5 + 1;
- 5 ÷ 2 = 2 + 1;
- 2 ÷ 2 = 1 + 0;
- 1 ÷ 2 = 0 + 1;
2. Construct the base 2 representation of the positive number:
Take all the remainders starting from the bottom of the list constructed above.
100 001 110 137(10) Base 10 decimal system number converted and written as a base 2 unsigned binary equivalent:
100 001 110 137 (base 10) = 1 0111 0100 1000 1000 0111 1101 1000 0111 1001 (base 2)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.