2. Multiply each bit by its corresponding power of 2 and add all the terms up.
100 1001 0110 1111 0101 1110 1110 1111(2) =
(1 × 230 + 0 × 229 + 0 × 228 + 1 × 227 + 0 × 226 + 0 × 225 + 1 × 224 + 0 × 223 + 1 × 222 + 1 × 221 + 0 × 220 + 1 × 219 + 1 × 218 + 1 × 217 + 1 × 216 + 0 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20)(10) =
(1 073 741 824 + 0 + 0 + 134 217 728 + 0 + 0 + 16 777 216 + 0 + 4 194 304 + 2 097 152 + 0 + 524 288 + 262 144 + 131 072 + 65 536 + 0 + 16 384 + 0 + 4 096 + 2 048 + 1 024 + 512 + 0 + 128 + 64 + 32 + 0 + 8 + 4 + 2 + 1)(10) =
(1 073 741 824 + 134 217 728 + 16 777 216 + 4 194 304 + 2 097 152 + 524 288 + 262 144 + 131 072 + 65 536 + 16 384 + 4 096 + 2 048 + 1 024 + 512 + 128 + 64 + 32 + 8 + 4 + 2 + 1)(10) =
1 232 035 567(10)
The number 100 1001 0110 1111 0101 1110 1110 1111(2) converted from an unsigned binary (in base 2) and written as a positive integer (with no sign) in decimal system (in base ten):
100 1001 0110 1111 0101 1110 1110 1111(2) = 1 232 035 567(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.