What are the steps to convert the signed binary in two's (2's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
1000 0000 1000 1111 1011 0111 0101 0111 0001 1101 0000 0000 0000 0000 0011 1100 is the binary representation of a negative integer, on 64 bits (8 Bytes).
- In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation in one's complement.
* Run this step only if the number is negative
- Note on binary subtraction rules:
- 11 - 1 = 10; 10 - 1 = 01; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
1000 0000 1000 1111 1011 0111 0101 0111 0001 1101 0000 0000 0000 0000 0011 1100 - 1 = 1000 0000 1000 1111 1011 0111 0101 0111 0001 1101 0000 0000 0000 0000 0011 1011
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
!(1000 0000 1000 1111 1011 0111 0101 0111 0001 1101 0000 0000 0000 0000 0011 1011) = 0111 1111 0111 0000 0100 1000 1010 1000 1110 0010 1111 1111 1111 1111 1100 0100
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
1 261
1 260
1 259
1 258
1 257
1 256
1 255
0 254
1 253
1 252
1 251
0 250
0 249
0 248
0 247
0 246
1 245
0 244
0 243
1 242
0 241
0 240
0 239
1 238
0 237
1 236
0 235
1 234
0 233
0 232
0 231
1 230
1 229
1 228
0 227
0 226
0 225
1 224
0 223
1 222
1 221
1 220
1 219
1 218
1 217
1 216
1 215
1 214
1 213
1 212
1 211
1 210
1 29
1 28
1 27
1 26
1 25
0 24
0 23
0 22
1 21
0 20
0
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0111 1111 0111 0000 0100 1000 1010 1000 1110 0010 1111 1111 1111 1111 1100 0100(2) =
(0 × 263 + 1 × 262 + 1 × 261 + 1 × 260 + 1 × 259 + 1 × 258 + 1 × 257 + 1 × 256 + 0 × 255 + 1 × 254 + 1 × 253 + 1 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 1 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 1 × 239 + 0 × 238 + 1 × 237 + 0 × 236 + 1 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 1 × 231 + 1 × 230 + 1 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 1 × 225 + 0 × 224 + 1 × 223 + 1 × 222 + 1 × 221 + 1 × 220 + 1 × 219 + 1 × 218 + 1 × 217 + 1 × 216 + 1 × 215 + 1 × 214 + 1 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20)(10) =
(0 + 4 611 686 018 427 387 904 + 2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 0 + 18 014 398 509 481 984 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 0 + 0 + 0 + 0 + 0 + 70 368 744 177 664 + 0 + 0 + 8 796 093 022 208 + 0 + 0 + 0 + 549 755 813 888 + 0 + 137 438 953 472 + 0 + 34 359 738 368 + 0 + 0 + 0 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 0 + 0 + 0 + 33 554 432 + 0 + 8 388 608 + 4 194 304 + 2 097 152 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 32 768 + 16 384 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 0 + 0 + 0 + 4 + 0 + 0)(10) =
(4 611 686 018 427 387 904 + 2 305 843 009 213 693 952 + 1 152 921 504 606 846 976 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 144 115 188 075 855 872 + 72 057 594 037 927 936 + 18 014 398 509 481 984 + 9 007 199 254 740 992 + 4 503 599 627 370 496 + 70 368 744 177 664 + 8 796 093 022 208 + 549 755 813 888 + 137 438 953 472 + 34 359 738 368 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 33 554 432 + 8 388 608 + 4 194 304 + 2 097 152 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 32 768 + 16 384 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 4)(10) =
9 182 919 530 408 574 916(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
1000 0000 1000 1111 1011 0111 0101 0111 0001 1101 0000 0000 0000 0000 0011 1100(2) = -9 182 919 530 408 574 916(10)
The number 1000 0000 1000 1111 1011 0111 0101 0111 0001 1101 0000 0000 0000 0000 0011 1100(2), signed binary in two's (2's) complement representation, converted and written as an integer in decimal system (base ten):
1000 0000 1000 1111 1011 0111 0101 0111 0001 1101 0000 0000 0000 0000 0011 1100(2) = -9 182 919 530 408 574 916(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.