What are the steps to convert the signed binary in two's (2's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
0000 1100 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0100 is the binary representation of a positive integer, on 64 bits (8 Bytes).
- In a signed binary in two's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation in one's complement.
* Run this step only if the number is negative
- Note on binary subtraction rules:
- 11 - 1 = 10; 10 - 1 = 01; 1 - 0 = 1; 1 - 1 = 0.
Subtract 1 from the initial binary number.
* Not the case - the number is positive
3. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive
4. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
1 258
1 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
1 249
1 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
0 237
0 236
0 235
0 234
0 233
0 232
0 231
0 230
0 229
0 228
0 227
0 226
0 225
0 224
0 223
0 222
0 221
0 220
0 219
0 218
0 217
0 216
0 215
0 214
0 213
0 212
0 211
0 210
0 29
0 28
0 27
0 26
0 25
0 24
1 23
0 22
1 21
0 20
0
5. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 1100 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0100(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 1 × 259 + 1 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 1 × 250 + 1 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 0 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 0 × 230 + 0 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 576 460 752 303 423 488 + 288 230 376 151 711 744 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 125 899 906 842 624 + 562 949 953 421 312 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 16 + 0 + 4 + 0 + 0)(10) =
(576 460 752 303 423 488 + 288 230 376 151 711 744 + 1 125 899 906 842 624 + 562 949 953 421 312 + 16 + 4)(10) =
866 379 978 315 399 188(10)
6. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 1100 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0100(2) = 866 379 978 315 399 188(10)
The number 0000 1100 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0100(2), signed binary in two's (2's) complement representation, converted and written as an integer in decimal system (base ten):
0000 1100 0000 0110 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0100(2) = 866 379 978 315 399 188(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.