# Signed binary number 1001 0101 converted to an integer in base ten

• 26

0
• 25

0
• 24

1
• 23

0
• 22

1
• 21

0
• 20

1

## Latest signed binary numbers converted to signed integers in decimal system (base ten)

 1001 0101 = -21 Mar 24 09:15 UTC (GMT) 0100 1100 0010 1111 1111 1111 1111 1011 = 1,278,214,139 Mar 24 09:13 UTC (GMT) 1010 1010 = -42 Mar 24 09:11 UTC (GMT) 0000 0000 0000 0000 0011 1011 0010 1011 = 15,147 Mar 24 09:11 UTC (GMT) 0100 0001 0111 0110 = 16,758 Mar 24 09:10 UTC (GMT) 0101 0001 0010 1001 1011 0010 0000 0100 0100 0100 1111 0100 1001 0110 0010 1111 = 5,848,401,322,523,792,943 Mar 24 09:10 UTC (GMT) 0000 0000 0000 0101 1101 0101 0101 1011 = 382,299 Mar 24 09:09 UTC (GMT) 0000 0000 0000 0001 0100 0110 1111 1101 = 83,709 Mar 24 09:09 UTC (GMT) 0000 0000 0000 0100 1000 0110 1111 0111 0111 0010 0000 0111 0011 0110 1111 0001 = 1,274,297,234,962,161 Mar 24 09:09 UTC (GMT) 0011 0000 0011 0000 0011 0111 0010 0101 = 808,466,213 Mar 24 09:09 UTC (GMT) 1011 0001 1110 1110 0010 0100 0101 0111 = -837,690,455 Mar 24 09:09 UTC (GMT) 1111 1000 0111 0000 0000 0111 1101 0111 = -2,020,607,959 Mar 24 09:08 UTC (GMT) 1100 0001 1010 1000 0000 0000 0001 1111 = -1,101,529,119 Mar 24 09:08 UTC (GMT) All the converted signed binary numbers to integers in base ten

## How to convert signed binary numbers from binary system to decimal (base ten)

### To understand how to convert a signed binary number from binary system to decimal (base ten), the easiest way is to do it through an example - convert the binary number, 1001 1110, to base ten:

• In a signed binary, the first bit (leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value (value without sign). The first bit is 1, so our number is negative.
• Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number and increasing each corresonding power of 2 by exactly one unit, but ignoring the very first bit (the leftmost, the one representing the sign):
•  powers of 2: 6 5 4 3 2 1 0 digits: 1 0 0 1 1 1 1 0
• Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up, but also taking care of the number sign: