What are the steps to convert the base 2 signed binary number
0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2) to a base 10 decimal system equivalent integer?
1. Is this a positive or a negative number?
0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101 is the binary representation of a positive integer, on 64 bits (8 Bytes).
- In a signed binary, the first bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.
2. Construct the unsigned binary number.
Exclude the first bit (the leftmost), that is reserved for the sign:
0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101 = 000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
1 254
0 253
0 252
1 251
0 250
0 249
0 248
0 247
1 246
1 245
0 244
0 243
1 242
0 241
1 240
0 239
0 238
1 237
0 236
0 235
0 234
0 233
0 232
0 231
1 230
1 229
1 228
0 227
1 226
1 225
1 224
0 223
1 222
1 221
0 220
1 219
0 218
0 217
1 216
0 215
1 214
1 213
0 212
1 211
1 210
0 29
0 28
1 27
0 26
0 25
1 24
0 23
0 22
1 21
0 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2) =
(0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 1 × 255 + 0 × 254 + 0 × 253 + 1 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 1 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 1 × 243 + 0 × 242 + 1 × 241 + 0 × 240 + 0 × 239 + 1 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 1 × 231 + 1 × 230 + 1 × 229 + 0 × 228 + 1 × 227 + 1 × 226 + 1 × 225 + 0 × 224 + 1 × 223 + 1 × 222 + 0 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 1 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 1 × 211 + 0 × 210 + 0 × 29 + 1 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 36 028 797 018 963 968 + 0 + 0 + 4 503 599 627 370 496 + 0 + 0 + 0 + 0 + 140 737 488 355 328 + 70 368 744 177 664 + 0 + 0 + 8 796 093 022 208 + 0 + 2 199 023 255 552 + 0 + 0 + 274 877 906 944 + 0 + 0 + 0 + 0 + 0 + 0 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 0 + 134 217 728 + 67 108 864 + 33 554 432 + 0 + 8 388 608 + 4 194 304 + 0 + 1 048 576 + 0 + 0 + 131 072 + 0 + 32 768 + 16 384 + 0 + 4 096 + 2 048 + 0 + 0 + 256 + 0 + 0 + 32 + 0 + 0 + 4 + 0 + 1)(10) =
(36 028 797 018 963 968 + 4 503 599 627 370 496 + 140 737 488 355 328 + 70 368 744 177 664 + 8 796 093 022 208 + 2 199 023 255 552 + 274 877 906 944 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 134 217 728 + 67 108 864 + 33 554 432 + 8 388 608 + 4 194 304 + 1 048 576 + 131 072 + 32 768 + 16 384 + 4 096 + 2 048 + 256 + 32 + 4 + 1)(10) =
40 754 776 879 847 717(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2) = 40 754 776 879 847 717(10)
0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2), Base 2 signed binary number, converted and written as a base 10 decimal system equivalent integer:
0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2) = 40 754 776 879 847 717(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.