Convert 0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101 Base 2 Signed Binary Number on 64 Bit - To Base 10 Decimal System Integer

How to convert 0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2), the base 2 signed binary number on 64 bit, to a base 10 decimal system integer

What are the steps to convert the base 2 signed binary number
0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2) to a base 10 decimal system equivalent integer?

1. Is this a positive or a negative number?

0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101 is the binary representation of a positive integer, on 64 bits (8 Bytes).


  • In a signed binary, the first bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.

2. Construct the unsigned binary number.

Exclude the first bit (the leftmost), that is reserved for the sign:


0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101 = 000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101


3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

  • 262

    0
  • 261

    0
  • 260

    0
  • 259

    0
  • 258

    0
  • 257

    0
  • 256

    0
  • 255

    1
  • 254

    0
  • 253

    0
  • 252

    1
  • 251

    0
  • 250

    0
  • 249

    0
  • 248

    0
  • 247

    1
  • 246

    1
  • 245

    0
  • 244

    0
  • 243

    1
  • 242

    0
  • 241

    1
  • 240

    0
  • 239

    0
  • 238

    1
  • 237

    0
  • 236

    0
  • 235

    0
  • 234

    0
  • 233

    0
  • 232

    0
  • 231

    1
  • 230

    1
  • 229

    1
  • 228

    0
  • 227

    1
  • 226

    1
  • 225

    1
  • 224

    0
  • 223

    1
  • 222

    1
  • 221

    0
  • 220

    1
  • 219

    0
  • 218

    0
  • 217

    1
  • 216

    0
  • 215

    1
  • 214

    1
  • 213

    0
  • 212

    1
  • 211

    1
  • 210

    0
  • 29

    0
  • 28

    1
  • 27

    0
  • 26

    0
  • 25

    1
  • 24

    0
  • 23

    0
  • 22

    1
  • 21

    0
  • 20

    1

4. Multiply each bit by its corresponding power of 2 and add all the terms up.

000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2) =


(0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 1 × 255 + 0 × 254 + 0 × 253 + 1 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 1 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 1 × 243 + 0 × 242 + 1 × 241 + 0 × 240 + 0 × 239 + 1 × 238 + 0 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 1 × 231 + 1 × 230 + 1 × 229 + 0 × 228 + 1 × 227 + 1 × 226 + 1 × 225 + 0 × 224 + 1 × 223 + 1 × 222 + 0 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 1 × 215 + 1 × 214 + 0 × 213 + 1 × 212 + 1 × 211 + 0 × 210 + 0 × 29 + 1 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =


(0 + 0 + 0 + 0 + 0 + 0 + 0 + 36 028 797 018 963 968 + 0 + 0 + 4 503 599 627 370 496 + 0 + 0 + 0 + 0 + 140 737 488 355 328 + 70 368 744 177 664 + 0 + 0 + 8 796 093 022 208 + 0 + 2 199 023 255 552 + 0 + 0 + 274 877 906 944 + 0 + 0 + 0 + 0 + 0 + 0 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 0 + 134 217 728 + 67 108 864 + 33 554 432 + 0 + 8 388 608 + 4 194 304 + 0 + 1 048 576 + 0 + 0 + 131 072 + 0 + 32 768 + 16 384 + 0 + 4 096 + 2 048 + 0 + 0 + 256 + 0 + 0 + 32 + 0 + 0 + 4 + 0 + 1)(10) =


(36 028 797 018 963 968 + 4 503 599 627 370 496 + 140 737 488 355 328 + 70 368 744 177 664 + 8 796 093 022 208 + 2 199 023 255 552 + 274 877 906 944 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 134 217 728 + 67 108 864 + 33 554 432 + 8 388 608 + 4 194 304 + 1 048 576 + 131 072 + 32 768 + 16 384 + 4 096 + 2 048 + 256 + 32 + 4 + 1)(10) =


40 754 776 879 847 717(10)

5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2) = 40 754 776 879 847 717(10)

0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2), Base 2 signed binary number, converted and written as a base 10 decimal system equivalent integer:
0000 0000 1001 0000 1100 1010 0100 0000 1110 1110 1101 0010 1101 1001 0010 0101(2) = 40 754 776 879 847 717(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.


How to convert signed binary numbers from binary system to decimal (base ten)

To understand how to convert a signed binary number from binary system to decimal (base ten), the easiest way is to do it through an example - convert the binary number, 1001 1110, to base ten:

  • In a signed binary, the first bit (leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value (value without sign). The first bit is 1, so our number is negative.
  • Write bellow the binary number in base two, and above each bit that makes up the binary number write the corresponding power of 2 (numeral base) that its place value represents, starting with zero, from the right of the number (rightmost bit), walking to the left of the number and increasing each corresonding power of 2 by exactly one unit, but ignoring the very first bit (the leftmost, the one representing the sign):
  • powers of 2:   6 5 4 3 2 1 0
    digits: 1 0 0 1 1 1 1 0
  • Build the representation of the positive number in base 10, by taking each digit of the binary number, multiplying it by the corresponding power of 2 and then adding all the terms up, but also taking care of the number sign:

    1001 1110 =


    - (0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =


    - (0 + 0 + 16 + 8 + 4 + 2 + 0)(10) =


    - (16 + 8 + 4 + 2)(10) =


    -30(10)

  • Binary signed number, 1001 1110 = -30(10), signed negative integer in base 10