What are the steps to convert the base 2 signed binary number
0000 0000 0000 0000 0000 0001 0110 0001 1101 0101 0111 0010 0111 1010 0110 1000(2) to a base 10 decimal system equivalent integer?
1. Is this a positive or a negative number?
0000 0000 0000 0000 0000 0001 0110 0001 1101 0101 0111 0010 0111 1010 0110 1000 is the binary representation of a positive integer, on 64 bits (8 Bytes).
- In a signed binary, the first bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.
2. Construct the unsigned binary number.
Exclude the first bit (the leftmost), that is reserved for the sign:
0000 0000 0000 0000 0000 0001 0110 0001 1101 0101 0111 0010 0111 1010 0110 1000 = 000 0000 0000 0000 0000 0001 0110 0001 1101 0101 0111 0010 0111 1010 0110 1000
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
1 239
0 238
1 237
1 236
0 235
0 234
0 233
0 232
1 231
1 230
1 229
0 228
1 227
0 226
1 225
0 224
1 223
0 222
1 221
1 220
1 219
0 218
0 217
1 216
0 215
0 214
1 213
1 212
1 211
1 210
0 29
1 28
0 27
0 26
1 25
1 24
0 23
1 22
0 21
0 20
0
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
000 0000 0000 0000 0000 0001 0110 0001 1101 0101 0111 0010 0111 1010 0110 1000(2) =
(0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 1 × 240 + 0 × 239 + 1 × 238 + 1 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 1 × 232 + 1 × 231 + 1 × 230 + 0 × 229 + 1 × 228 + 0 × 227 + 1 × 226 + 0 × 225 + 1 × 224 + 0 × 223 + 1 × 222 + 1 × 221 + 1 × 220 + 0 × 219 + 0 × 218 + 1 × 217 + 0 × 216 + 0 × 215 + 1 × 214 + 1 × 213 + 1 × 212 + 1 × 211 + 0 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 099 511 627 776 + 0 + 274 877 906 944 + 137 438 953 472 + 0 + 0 + 0 + 0 + 4 294 967 296 + 2 147 483 648 + 1 073 741 824 + 0 + 268 435 456 + 0 + 67 108 864 + 0 + 16 777 216 + 0 + 4 194 304 + 2 097 152 + 1 048 576 + 0 + 0 + 131 072 + 0 + 0 + 16 384 + 8 192 + 4 096 + 2 048 + 0 + 512 + 0 + 0 + 64 + 32 + 0 + 8 + 0 + 0 + 0)(10) =
(1 099 511 627 776 + 274 877 906 944 + 137 438 953 472 + 4 294 967 296 + 2 147 483 648 + 1 073 741 824 + 268 435 456 + 67 108 864 + 16 777 216 + 4 194 304 + 2 097 152 + 1 048 576 + 131 072 + 16 384 + 8 192 + 4 096 + 2 048 + 512 + 64 + 32 + 8)(10) =
1 519 704 504 936(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0000 0001 0110 0001 1101 0101 0111 0010 0111 1010 0110 1000(2) = 1 519 704 504 936(10)
0000 0000 0000 0000 0000 0001 0110 0001 1101 0101 0111 0010 0111 1010 0110 1000(2), Base 2 signed binary number, converted and written as a base 10 decimal system equivalent integer:
0000 0000 0000 0000 0000 0001 0110 0001 1101 0101 0111 0010 0111 1010 0110 1000(2) = 1 519 704 504 936(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.