What are the steps to convert the base 2 signed binary number
0000 0000 0000 0000 0000 0000 0110 0001 1010 0000 0000 0000 0000 0000 0001 0101(2) to a base 10 decimal system equivalent integer?
1. Is this a positive or a negative number?
0000 0000 0000 0000 0000 0000 0110 0001 1010 0000 0000 0000 0000 0000 0001 0101 is the binary representation of a positive integer, on 64 bits (8 Bytes).
- In a signed binary, the first bit (the leftmost) is reserved for the sign, 1 = negative, 0 = positive. This bit does not count when calculating the absolute value.
2. Construct the unsigned binary number.
Exclude the first bit (the leftmost), that is reserved for the sign:
0000 0000 0000 0000 0000 0000 0110 0001 1010 0000 0000 0000 0000 0000 0001 0101 = 000 0000 0000 0000 0000 0000 0110 0001 1010 0000 0000 0000 0000 0000 0001 0101
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
0 245
0 244
0 243
0 242
0 241
0 240
0 239
0 238
1 237
1 236
0 235
0 234
0 233
0 232
1 231
1 230
0 229
1 228
0 227
0 226
0 225
0 224
0 223
0 222
0 221
0 220
0 219
0 218
0 217
0 216
0 215
0 214
0 213
0 212
0 211
0 210
0 29
0 28
0 27
0 26
0 25
0 24
1 23
0 22
1 21
0 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
000 0000 0000 0000 0000 0000 0110 0001 1010 0000 0000 0000 0000 0000 0001 0101(2) =
(0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 0 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 0 × 240 + 0 × 239 + 1 × 238 + 1 × 237 + 0 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 1 × 232 + 1 × 231 + 0 × 230 + 1 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 0 × 213 + 0 × 212 + 0 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 274 877 906 944 + 137 438 953 472 + 0 + 0 + 0 + 0 + 4 294 967 296 + 2 147 483 648 + 0 + 536 870 912 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 16 + 0 + 4 + 0 + 1)(10) =
(274 877 906 944 + 137 438 953 472 + 4 294 967 296 + 2 147 483 648 + 536 870 912 + 16 + 4 + 1)(10) =
419 296 182 293(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0000 0000 0110 0001 1010 0000 0000 0000 0000 0000 0001 0101(2) = 419 296 182 293(10)
0000 0000 0000 0000 0000 0000 0110 0001 1010 0000 0000 0000 0000 0000 0001 0101(2), Base 2 signed binary number, converted and written as a base 10 decimal system equivalent integer:
0000 0000 0000 0000 0000 0000 0110 0001 1010 0000 0000 0000 0000 0000 0001 0101(2) = 419 296 182 293(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.