What are the steps to convert the signed binary in one's (1's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
1001 0011 1100 1010 0101 0010 0100 0000 is the binary representation of a negative integer, on 32 bits (4 Bytes).
- In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
!(1001 0011 1100 1010 0101 0010 0100 0000) = 0110 1100 0011 0101 1010 1101 1011 1111
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
231
0 230
1 229
1 228
0 227
1 226
1 225
0 224
0 223
0 222
0 221
1 220
1 219
0 218
1 217
0 216
1 215
1 214
0 213
1 212
0 211
1 210
1 29
0 28
1 27
1 26
0 25
1 24
1 23
1 22
1 21
1 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0110 1100 0011 0101 1010 1101 1011 1111(2) =
(0 × 231 + 1 × 230 + 1 × 229 + 0 × 228 + 1 × 227 + 1 × 226 + 0 × 225 + 0 × 224 + 0 × 223 + 0 × 222 + 1 × 221 + 1 × 220 + 0 × 219 + 1 × 218 + 0 × 217 + 1 × 216 + 1 × 215 + 0 × 214 + 1 × 213 + 0 × 212 + 1 × 211 + 1 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20)(10) =
(0 + 1 073 741 824 + 536 870 912 + 0 + 134 217 728 + 67 108 864 + 0 + 0 + 0 + 0 + 2 097 152 + 1 048 576 + 0 + 262 144 + 0 + 65 536 + 32 768 + 0 + 8 192 + 0 + 2 048 + 1 024 + 0 + 256 + 128 + 0 + 32 + 16 + 8 + 4 + 2 + 1)(10) =
(1 073 741 824 + 536 870 912 + 134 217 728 + 67 108 864 + 2 097 152 + 1 048 576 + 262 144 + 65 536 + 32 768 + 8 192 + 2 048 + 1 024 + 256 + 128 + 32 + 16 + 8 + 4 + 2 + 1)(10) =
1 815 457 215(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
1001 0011 1100 1010 0101 0010 0100 0000(2) = -1 815 457 215(10)
The number 1001 0011 1100 1010 0101 0010 0100 0000(2), signed binary in one's (1's) complement representation, converted and written as an integer in decimal system (base ten):
1001 0011 1100 1010 0101 0010 0100 0000(2) = -1 815 457 215(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.