What are the steps to convert the signed binary in one's (1's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
0101 0001 0110 1111 0110 0100 0011 0011 is the binary representation of a positive integer, on 32 bits (4 Bytes).
- In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
231
0 230
1 229
0 228
1 227
0 226
0 225
0 224
1 223
0 222
1 221
1 220
0 219
1 218
1 217
1 216
1 215
0 214
1 213
1 212
0 211
0 210
1 29
0 28
0 27
0 26
0 25
1 24
1 23
0 22
0 21
1 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0101 0001 0110 1111 0110 0100 0011 0011(2) =
(0 × 231 + 1 × 230 + 0 × 229 + 1 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 1 × 224 + 0 × 223 + 1 × 222 + 1 × 221 + 0 × 220 + 1 × 219 + 1 × 218 + 1 × 217 + 1 × 216 + 0 × 215 + 1 × 214 + 1 × 213 + 0 × 212 + 0 × 211 + 1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20)(10) =
(0 + 1 073 741 824 + 0 + 268 435 456 + 0 + 0 + 0 + 16 777 216 + 0 + 4 194 304 + 2 097 152 + 0 + 524 288 + 262 144 + 131 072 + 65 536 + 0 + 16 384 + 8 192 + 0 + 0 + 1 024 + 0 + 0 + 0 + 0 + 32 + 16 + 0 + 0 + 2 + 1)(10) =
(1 073 741 824 + 268 435 456 + 16 777 216 + 4 194 304 + 2 097 152 + 524 288 + 262 144 + 131 072 + 65 536 + 16 384 + 8 192 + 1 024 + 32 + 16 + 2 + 1)(10) =
1 366 254 643(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0101 0001 0110 1111 0110 0100 0011 0011(2) = 1 366 254 643(10)
The number 0101 0001 0110 1111 0110 0100 0011 0011(2), signed binary in one's (1's) complement representation, converted and written as an integer in decimal system (base ten):
0101 0001 0110 1111 0110 0100 0011 0011(2) = 1 366 254 643(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.