What are the steps to convert the signed binary in one's (1's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
0000 1000 0101 0101 0111 1001 1111 0001 1001 1010 1000 0000 0010 1101 1000 0000 is the binary representation of a positive integer, on 64 bits (8 Bytes).
- In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
1 258
0 257
0 256
0 255
0 254
1 253
0 252
1 251
0 250
1 249
0 248
1 247
0 246
1 245
1 244
1 243
1 242
0 241
0 240
1 239
1 238
1 237
1 236
1 235
0 234
0 233
0 232
1 231
1 230
0 229
0 228
1 227
1 226
0 225
1 224
0 223
1 222
0 221
0 220
0 219
0 218
0 217
0 216
0 215
0 214
0 213
1 212
0 211
1 210
1 29
0 28
1 27
1 26
0 25
0 24
0 23
0 22
0 21
0 20
0
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 1000 0101 0101 0111 1001 1111 0001 1001 1010 1000 0000 0010 1101 1000 0000(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 1 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 1 × 254 + 0 × 253 + 1 × 252 + 0 × 251 + 1 × 250 + 0 × 249 + 1 × 248 + 0 × 247 + 1 × 246 + 1 × 245 + 1 × 244 + 1 × 243 + 0 × 242 + 0 × 241 + 1 × 240 + 1 × 239 + 1 × 238 + 1 × 237 + 1 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 1 × 232 + 1 × 231 + 0 × 230 + 0 × 229 + 1 × 228 + 1 × 227 + 0 × 226 + 1 × 225 + 0 × 224 + 1 × 223 + 0 × 222 + 0 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 0 × 217 + 0 × 216 + 0 × 215 + 0 × 214 + 1 × 213 + 0 × 212 + 1 × 211 + 1 × 210 + 0 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 576 460 752 303 423 488 + 0 + 0 + 0 + 0 + 18 014 398 509 481 984 + 0 + 4 503 599 627 370 496 + 0 + 1 125 899 906 842 624 + 0 + 281 474 976 710 656 + 0 + 70 368 744 177 664 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 0 + 0 + 1 099 511 627 776 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 0 + 0 + 0 + 4 294 967 296 + 2 147 483 648 + 0 + 0 + 268 435 456 + 134 217 728 + 0 + 33 554 432 + 0 + 8 388 608 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 8 192 + 0 + 2 048 + 1 024 + 0 + 256 + 128 + 0 + 0 + 0 + 0 + 0 + 0 + 0)(10) =
(576 460 752 303 423 488 + 18 014 398 509 481 984 + 4 503 599 627 370 496 + 1 125 899 906 842 624 + 281 474 976 710 656 + 70 368 744 177 664 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 1 099 511 627 776 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 4 294 967 296 + 2 147 483 648 + 268 435 456 + 134 217 728 + 33 554 432 + 8 388 608 + 8 192 + 2 048 + 1 024 + 256 + 128)(10) =
600 520 203 910 000 000(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 1000 0101 0101 0111 1001 1111 0001 1001 1010 1000 0000 0010 1101 1000 0000(2) = 600 520 203 910 000 000(10)
The number 0000 1000 0101 0101 0111 1001 1111 0001 1001 1010 1000 0000 0010 1101 1000 0000(2), signed binary in one's (1's) complement representation, converted and written as an integer in decimal system (base ten):
0000 1000 0101 0101 0111 1001 1111 0001 1001 1010 1000 0000 0010 1101 1000 0000(2) = 600 520 203 910 000 000(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.