How to convert a signed binary one's complement:
0000 0000 0100 0010 1111 1100 1111 1111 0110 0001 1001 0111 0010 0100 1101 0101(2)
to an integer in decimal system (in base 10)
1. Is this a positive or a negative number?
In a signed binary one's complement, first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0000 0000 0100 0010 1111 1100 1111 1111 0110 0001 1001 0111 0010 0100 1101 0101 is the binary representation of a positive integer, on 64 bits (8 Bytes).
2. Get the binary representation of the positive (unsigned) number:
* Run this step only if the number is negative *
Flip all the bits in the signed binary one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
1 253
0 252
0 251
0 250
0 249
1 248
0 247
1 246
1 245
1 244
1 243
1 242
1 241
0 240
0 239
1 238
1 237
1 236
1 235
1 234
1 233
1 232
1 231
0 230
1 229
1 228
0 227
0 226
0 225
0 224
1 223
1 222
0 221
0 220
1 219
0 218
1 217
1 216
1 215
0 214
0 213
1 212
0 211
0 210
1 29
0 28
0 27
1 26
1 25
0 24
1 23
0 22
1 21
0 20
1
4. Multiply each bit by its corresponding power of 2 and add all the terms up:
0000 0000 0100 0010 1111 1100 1111 1111 0110 0001 1001 0111 0010 0100 1101 0101(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 1 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 1 × 249 + 0 × 248 + 1 × 247 + 1 × 246 + 1 × 245 + 1 × 244 + 1 × 243 + 1 × 242 + 0 × 241 + 0 × 240 + 1 × 239 + 1 × 238 + 1 × 237 + 1 × 236 + 1 × 235 + 1 × 234 + 1 × 233 + 1 × 232 + 0 × 231 + 1 × 230 + 1 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 1 × 224 + 1 × 223 + 0 × 222 + 0 × 221 + 1 × 220 + 0 × 219 + 1 × 218 + 1 × 217 + 1 × 216 + 0 × 215 + 0 × 214 + 1 × 213 + 0 × 212 + 0 × 211 + 1 × 210 + 0 × 29 + 0 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 18 014 398 509 481 984 + 0 + 0 + 0 + 0 + 562 949 953 421 312 + 0 + 140 737 488 355 328 + 70 368 744 177 664 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 4 398 046 511 104 + 0 + 0 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 4 294 967 296 + 0 + 1 073 741 824 + 536 870 912 + 0 + 0 + 0 + 0 + 16 777 216 + 8 388 608 + 0 + 0 + 1 048 576 + 0 + 262 144 + 131 072 + 65 536 + 0 + 0 + 8 192 + 0 + 0 + 1 024 + 0 + 0 + 128 + 64 + 0 + 16 + 0 + 4 + 0 + 1)(10) =
(18 014 398 509 481 984 + 562 949 953 421 312 + 140 737 488 355 328 + 70 368 744 177 664 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 4 398 046 511 104 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 4 294 967 296 + 1 073 741 824 + 536 870 912 + 16 777 216 + 8 388 608 + 1 048 576 + 262 144 + 131 072 + 65 536 + 8 192 + 1 024 + 128 + 64 + 16 + 4 + 1)(10) =
18 855 522 247 058 645(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0100 0010 1111 1100 1111 1111 0110 0001 1001 0111 0010 0100 1101 0101(2) = 18 855 522 247 058 645(10)
Conclusion:
Number 0000 0000 0100 0010 1111 1100 1111 1111 0110 0001 1001 0111 0010 0100 1101 0101(2) converted from signed binary one's complement representation to an integer in decimal system (in base 10):
0000 0000 0100 0010 1111 1100 1111 1111 0110 0001 1001 0111 0010 0100 1101 0101(2) = 18 855 522 247 058 645(10)
Spaces used to group digits: for binary, by 4; for decimal, by 3.
More operations of this kind:
Convert signed binary one's complement numbers to decimal system (base ten) integers
Entered binary number length must be: 2, 4, 8, 16, 32, or 64 - otherwise extra bits on 0 will be added in front (to the left).