0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100 Signed Binary Number in One's Complement Representation, Converted and Written as a Decimal System Integer Number (in Base Ten). Steps Explained in Detail

Signed binary in one's complement representation 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100(2) converted to an integer in decimal system (in base ten) = ?

The steps we'll go through to make the conversion:

Get the binary representation of the positive (unsigned) number.

Map the unsigned binary number's digits.

Multiply each bit by its corresponding power of 2 and add all the terms up.

1. Is this a positive or a negative number?

In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.


0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100 is the binary representation of a positive integer, on 64 bits (8 Bytes).


2. Get the binary representation of the positive (unsigned) number.

* Run this step only if the number is negative *

Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:

* Not the case - the number is positive *


3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:

    • 263

      0
    • 262

      0
    • 261

      0
    • 260

      0
    • 259

      0
    • 258

      0
    • 257

      0
    • 256

      0
    • 255

      0
    • 254

      0
    • 253

      0
    • 252

      0
    • 251

      0
    • 250

      1
    • 249

      1
    • 248

      1
    • 247

      1
    • 246

      1
    • 245

      1
    • 244

      1
    • 243

      1
    • 242

      1
    • 241

      1
    • 240

      1
    • 239

      1
    • 238

      1
    • 237

      1
    • 236

      1
    • 235

      1
    • 234

      1
    • 233

      1
    • 232

      1
    • 231

      1
    • 230

      1
    • 229

      1
    • 228

      1
    • 227

      1
    • 226

      1
    • 225

      1
    • 224

      1
    • 223

      1
    • 222

      1
    • 221

      1
    • 220

      1
    • 219

      1
    • 218

      1
    • 217

      1
    • 216

      1
    • 215

      1
    • 214

      1
    • 213

      1
    • 212

      1
    • 211

      1
    • 210

      1
    • 29

      1
    • 28

      1
    • 27

      1
    • 26

      1
    • 25

      1
    • 24

      0
    • 23

      1
    • 22

      1
    • 21

      0
    • 20

      0

4. Multiply each bit by its corresponding power of 2 and add all the terms up.

0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100(2) =


(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 1 × 250 + 1 × 249 + 1 × 248 + 1 × 247 + 1 × 246 + 1 × 245 + 1 × 244 + 1 × 243 + 1 × 242 + 1 × 241 + 1 × 240 + 1 × 239 + 1 × 238 + 1 × 237 + 1 × 236 + 1 × 235 + 1 × 234 + 1 × 233 + 1 × 232 + 1 × 231 + 1 × 230 + 1 × 229 + 1 × 228 + 1 × 227 + 1 × 226 + 1 × 225 + 1 × 224 + 1 × 223 + 1 × 222 + 1 × 221 + 1 × 220 + 1 × 219 + 1 × 218 + 1 × 217 + 1 × 216 + 1 × 215 + 1 × 214 + 1 × 213 + 1 × 212 + 1 × 211 + 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20)(10) =


(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 140 737 488 355 328 + 70 368 744 177 664 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 4 398 046 511 104 + 2 199 023 255 552 + 1 099 511 627 776 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 4 294 967 296 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 268 435 456 + 134 217 728 + 67 108 864 + 33 554 432 + 16 777 216 + 8 388 608 + 4 194 304 + 2 097 152 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 32 768 + 16 384 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 32 + 0 + 8 + 4 + 0 + 0)(10) =


(1 125 899 906 842 624 + 562 949 953 421 312 + 281 474 976 710 656 + 140 737 488 355 328 + 70 368 744 177 664 + 35 184 372 088 832 + 17 592 186 044 416 + 8 796 093 022 208 + 4 398 046 511 104 + 2 199 023 255 552 + 1 099 511 627 776 + 549 755 813 888 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 34 359 738 368 + 17 179 869 184 + 8 589 934 592 + 4 294 967 296 + 2 147 483 648 + 1 073 741 824 + 536 870 912 + 268 435 456 + 134 217 728 + 67 108 864 + 33 554 432 + 16 777 216 + 8 388 608 + 4 194 304 + 2 097 152 + 1 048 576 + 524 288 + 262 144 + 131 072 + 65 536 + 32 768 + 16 384 + 8 192 + 4 096 + 2 048 + 1 024 + 512 + 256 + 128 + 64 + 32 + 8 + 4)(10) =


2 251 799 813 685 228(10)

5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:

0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100(2) = 2 251 799 813 685 228(10)

The signed binary number in one's complement representation 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100(2) converted and written as an integer in decimal system (base ten):
0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100(2) = 2 251 799 813 685 228(10)

Spaces were used to group digits: for binary, by 4, for decimal, by 3.

The signed binary in one's complement representation 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1011 converted and written as an integer number in decimal system (in base ten) = ?

The signed binary in one's complement representation 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1101 converted and written as an integer number in decimal system (in base ten) = ?

Convert signed binary numbers in one's complement representation to decimal system (base ten) integers

Binary number's length must be: 2, 4, 8, 16, 32, 64 - or else extra bits on 0 are added in front (to the left).

How to convert a signed binary number in one's complement representation to an integer in base ten:

1) In a signed binary one's complement, first bit (leftmost) indicates the sign, 1 = negative, 0 = positive.

2) Construct the unsigned binary number: flip all the bits in the signed binary one's complement representation (reversing the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s.

3) Multiply each bit of the binary number by its corresponding power of 2 that its place value represents.

4) Add all the terms up to get the positive integer number in base ten.

5) Adjust the sign of the integer number by the first bit of the initial binary number.

The latest binary numbers in one's complement representation converted to signed integers numbers written in decimal system (base ten)

Convert signed binary number written in one's complement representation 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110 1100, write it as a decimal system (base ten) integer Oct 03 15:13 UTC (GMT)
Convert signed binary number written in one's complement representation 0011 0111, write it as a decimal system (base ten) integer Oct 03 15:12 UTC (GMT)
Convert signed binary number written in one's complement representation 1101 1100, write it as a decimal system (base ten) integer Oct 03 15:12 UTC (GMT)
Convert signed binary number written in one's complement representation 1100 0000 1101 1001 1001 1001 1001 1100, write it as a decimal system (base ten) integer Oct 03 15:10 UTC (GMT)
Convert signed binary number written in one's complement representation 1111 1111 1111 1111 1100 0111 1101 1010, write it as a decimal system (base ten) integer Oct 03 15:08 UTC (GMT)
Convert signed binary number written in one's complement representation 1101 1100, write it as a decimal system (base ten) integer Oct 03 15:07 UTC (GMT)
Convert signed binary number written in one's complement representation 0110 1110 0001 0001 1111 0001 0111 0100, write it as a decimal system (base ten) integer Oct 03 15:07 UTC (GMT)
Convert signed binary number written in one's complement representation 1101 0111, write it as a decimal system (base ten) integer Oct 03 15:07 UTC (GMT)
Convert signed binary number written in one's complement representation 0000 0110 0111 0101, write it as a decimal system (base ten) integer Oct 03 15:01 UTC (GMT)
Convert signed binary number written in one's complement representation 1010 1111, write it as a decimal system (base ten) integer Oct 03 15:01 UTC (GMT)
Convert signed binary number written in one's complement representation 1010 1111, write it as a decimal system (base ten) integer Oct 03 15:00 UTC (GMT)
Convert signed binary number written in one's complement representation 0100 1111 0001 0000 0010 0001 0001 1100, write it as a decimal system (base ten) integer Oct 03 14:59 UTC (GMT)
Convert signed binary number written in one's complement representation 1010 1111, write it as a decimal system (base ten) integer Oct 03 14:57 UTC (GMT)
All the signed binary numbers in one's complement representation converted to decimal system (base ten) integers

How to convert signed binary numbers in one's complement representation from binary system to decimal

To understand how to convert a signed binary number in one's complement representation from binary system to decimal (base ten), the easiest way is to do it through an example - convert binary, 1001 1101, to base ten:

Available Base Conversions Between Decimal and Binary Systems

Conversions Between Decimal System Numbers (Written in Base Ten) and Binary System Numbers (Base Two and Computer Representation):


1. Integer -> Binary

2. Decimal -> Binary

3. Binary -> Integer

4. Binary -> Decimal