What are the steps to convert the signed binary in one's (1's) complement representation to an integer in decimal system (in base ten)?
1. Is this a positive or a negative number?
0000 0000 0000 0000 0100 0001 0111 0000 0110 0001 0110 0011 0110 1000 0100 1110 is the binary representation of a positive integer, on 64 bits (8 Bytes).
- In a signed binary in one's complement representation, the first bit (the leftmost) indicates the sign, 1 = negative, 0 = positive.
2. Get the binary representation of the positive (unsigned) number.
* Run this step only if the number is negative *
Flip all the bits of the signed binary in one's complement representation (reverse the digits) - replace the bits set on 1 with 0s and the bits on 0 with 1s:
* Not the case - the number is positive *
3. Map the unsigned binary number's digits versus the corresponding powers of 2 that their place value represent:
263
0 262
0 261
0 260
0 259
0 258
0 257
0 256
0 255
0 254
0 253
0 252
0 251
0 250
0 249
0 248
0 247
0 246
1 245
0 244
0 243
0 242
0 241
0 240
1 239
0 238
1 237
1 236
1 235
0 234
0 233
0 232
0 231
0 230
1 229
1 228
0 227
0 226
0 225
0 224
1 223
0 222
1 221
1 220
0 219
0 218
0 217
1 216
1 215
0 214
1 213
1 212
0 211
1 210
0 29
0 28
0 27
0 26
1 25
0 24
0 23
1 22
1 21
1 20
0
4. Multiply each bit by its corresponding power of 2 and add all the terms up.
0000 0000 0000 0000 0100 0001 0111 0000 0110 0001 0110 0011 0110 1000 0100 1110(2) =
(0 × 263 + 0 × 262 + 0 × 261 + 0 × 260 + 0 × 259 + 0 × 258 + 0 × 257 + 0 × 256 + 0 × 255 + 0 × 254 + 0 × 253 + 0 × 252 + 0 × 251 + 0 × 250 + 0 × 249 + 0 × 248 + 0 × 247 + 1 × 246 + 0 × 245 + 0 × 244 + 0 × 243 + 0 × 242 + 0 × 241 + 1 × 240 + 0 × 239 + 1 × 238 + 1 × 237 + 1 × 236 + 0 × 235 + 0 × 234 + 0 × 233 + 0 × 232 + 0 × 231 + 1 × 230 + 1 × 229 + 0 × 228 + 0 × 227 + 0 × 226 + 0 × 225 + 1 × 224 + 0 × 223 + 1 × 222 + 1 × 221 + 0 × 220 + 0 × 219 + 0 × 218 + 1 × 217 + 1 × 216 + 0 × 215 + 1 × 214 + 1 × 213 + 0 × 212 + 1 × 211 + 0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20)(10) =
(0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 70 368 744 177 664 + 0 + 0 + 0 + 0 + 0 + 1 099 511 627 776 + 0 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 0 + 0 + 0 + 0 + 0 + 1 073 741 824 + 536 870 912 + 0 + 0 + 0 + 0 + 16 777 216 + 0 + 4 194 304 + 2 097 152 + 0 + 0 + 0 + 131 072 + 65 536 + 0 + 16 384 + 8 192 + 0 + 2 048 + 0 + 0 + 0 + 0 + 64 + 0 + 0 + 8 + 4 + 2 + 0)(10) =
(70 368 744 177 664 + 1 099 511 627 776 + 274 877 906 944 + 137 438 953 472 + 68 719 476 736 + 1 073 741 824 + 536 870 912 + 16 777 216 + 4 194 304 + 2 097 152 + 131 072 + 65 536 + 16 384 + 8 192 + 2 048 + 64 + 8 + 4 + 2)(10) =
71 950 926 047 310(10)
5. If needed, adjust the sign of the integer number by the first digit (leftmost) of the signed binary:
0000 0000 0000 0000 0100 0001 0111 0000 0110 0001 0110 0011 0110 1000 0100 1110(2) = 71 950 926 047 310(10)
The number 0000 0000 0000 0000 0100 0001 0111 0000 0110 0001 0110 0011 0110 1000 0100 1110(2), signed binary in one's (1's) complement representation, converted and written as an integer in decimal system (base ten):
0000 0000 0000 0000 0100 0001 0111 0000 0110 0001 0110 0011 0110 1000 0100 1110(2) = 71 950 926 047 310(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.