0 - 111 1111 1011 - 0000 0000 0000 0000 0000 0111 1111 0101 1111 1111 1111 1100 1100 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal
0 - 111 1111 1011 - 0000 0000 0000 0000 0000 0111 1111 0101 1111 1111 1111 1100 1100: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
0 - 111 1111 1011 - 0000 0000 0000 0000 0000 0111 1111 0101 1111 1111 1111 1100 1100, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
111 1111 1011
The last 52 bits contain the mantissa:
0000 0000 0000 0000 0000 0111 1111 0101 1111 1111 1111 1100 1100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
111 1111 1011(2) =
1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
1,024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 0 + 2 + 1 =
1,024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 2 + 1 =
2,043(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 2,043 - 1023 = 1020
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0000 0000 0000 0000 0000 0111 1111 0101 1111 1111 1111 1100 1100(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 1 × 2-27 + 1 × 2-28 + 0 × 2-29 + 1 × 2-30 + 0 × 2-31 + 1 × 2-32 + 1 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 1 × 2-41 + 1 × 2-42 + 1 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 1 × 2-50 + 0 × 2-51 + 0 × 2-52 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0 + 0 =
0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 =
0.000 000 474 508 840 220 266 847 609 309 479 594 230 651 855 468 75(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.000 000 474 508 840 220 266 847 609 309 479 594 230 651 855 468 75) × 21020 =
1.000 000 474 508 840 220 266 847 609 309 479 594 230 651 855 468 75 × 21020 = ...
= 11 235 587 424 272 502 519 891 162 912 426 483 796 578 611 077 747 383 062 145 859 898 387 849 207 955 283 692 597 035 012 921 488 012 226 466 072 826 526 546 084 163 740 312 641 069 957 431 425 993 627 499 482 252 064 399 877 281 085 011 169 435 795 539 351 183 940 194 287 762 987 085 347 393 516 929 398 491 463 493 773 754 393 811 046 210 699 237 309 369 806 930 188 212 470 073 379 048 209 916 931 080 192
0 - 111 1111 1011 - 0000 0000 0000 0000 0000 0111 1111 0101 1111 1111 1111 1100 1100, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = 11 235 587 424 272 502 519 891 162 912 426 483 796 578 611 077 747 383 062 145 859 898 387 849 207 955 283 692 597 035 012 921 488 012 226 466 072 826 526 546 084 163 740 312 641 069 957 431 425 993 627 499 482 252 064 399 877 281 085 011 169 435 795 539 351 183 940 194 287 762 987 085 347 393 516 929 398 491 463 493 773 754 393 811 046 210 699 237 309 369 806 930 188 212 470 073 379 048 209 916 931 080 192(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.