1 - 111 1010 0000 - 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 0110 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal
1 - 111 1010 0000 - 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 0110: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
1 - 111 1010 0000 - 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 0110, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
111 1010 0000
The last 52 bits contain the mantissa:
0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 0110
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
111 1010 0000(2) =
1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
1,024 + 512 + 256 + 128 + 0 + 32 + 0 + 0 + 0 + 0 + 0 =
1,024 + 512 + 256 + 128 + 32 =
1,952(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,952 - 1023 = 929
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 0110(2) =
0 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 1 × 2-46 + 1 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0 + 0.25 + 0 + 0.062 5 + 0 + 0.015 625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.25 + 0.062 5 + 0.015 625 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.328 125 000 000 022 648 549 702 353 193 424 642 086 029 052 734 375(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.328 125 000 000 022 648 549 702 353 193 424 642 086 029 052 734 375) × 2929 =
-1.328 125 000 000 022 648 549 702 353 193 424 642 086 029 052 734 375 × 2929 = ...
= -6 027 051 793 127 713 955 856 435 101 363 499 887 346 247 507 515 102 668 611 089 487 918 149 849 811 897 305 529 677 303 771 970 053 793 759 973 692 560 814 896 593 677 280 250 874 764 455 002 324 614 311 475 304 825 316 977 876 448 764 756 239 731 727 412 155 268 261 975 258 278 912 831 503 950 753 628 323 020 355 048 252 601 514 595 546 887 990 298 743 602 281 447 424
1 - 111 1010 0000 - 0101 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0110 0110, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = -6 027 051 793 127 713 955 856 435 101 363 499 887 346 247 507 515 102 668 611 089 487 918 149 849 811 897 305 529 677 303 771 970 053 793 759 973 692 560 814 896 593 677 280 250 874 764 455 002 324 614 311 475 304 825 316 977 876 448 764 756 239 731 727 412 155 268 261 975 258 278 912 831 503 950 753 628 323 020 355 048 252 601 514 595 546 887 990 298 743 602 281 447 424(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.