1 - 110 0001 1000 - 0011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal
1 - 110 0001 1000 - 0011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
1 - 110 0001 1000 - 0011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
110 0001 1000
The last 52 bits contain the mantissa:
0011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
110 0001 1000(2) =
1 × 210 + 1 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
1,024 + 512 + 0 + 0 + 0 + 0 + 16 + 8 + 0 + 0 + 0 =
1,024 + 512 + 16 + 8 =
1,560(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,560 - 1023 = 537
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110(2) =
0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 1 × 2-49 + 1 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0 + 0 + 0.125 + 0.062 5 + 0 + 0 + 0.007 812 5 + 0.003 906 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.125 + 0.062 5 + 0.007 812 5 + 0.003 906 25 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.199 218 750 000 003 108 624 468 950 438 313 186 168 670 654 296 875(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.199 218 750 000 003 108 624 468 950 438 313 186 168 670 654 296 875) × 2537 =
-1.199 218 750 000 003 108 624 468 950 438 313 186 168 670 654 296 875 × 2537 = ...
= -539 518 177 704 986 277 263 208 089 165 924 514 687 198 406 447 367 634 107 097 586 091 385 794 771 906 496 614 955 198 533 862 850 281 909 844 149 282 343 197 318 633 671 040 787 631 210 922 352 607 131 789 688 832
1 - 110 0001 1000 - 0011 0011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1110, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = -539 518 177 704 986 277 263 208 089 165 924 514 687 198 406 447 367 634 107 097 586 091 385 794 771 906 496 614 955 198 533 862 850 281 909 844 149 282 343 197 318 633 671 040 787 631 210 922 352 607 131 789 688 832(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.