0 - 100 0000 1111 - 1000 1011 0101 1111 1100 0111 0110 1110 0111 0001 1010 1011 1010 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal
0 - 100 0000 1111 - 1000 1011 0101 1111 1100 0111 0110 1110 0111 0001 1010 1011 1010: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
0 - 100 0000 1111 - 1000 1011 0101 1111 1100 0111 0110 1110 0111 0001 1010 1011 1010, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
100 0000 1111
The last 52 bits contain the mantissa:
1000 1011 0101 1111 1100 0111 0110 1110 0111 0001 1010 1011 1010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
100 0000 1111(2) =
1 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
1,024 + 0 + 0 + 0 + 0 + 0 + 0 + 8 + 4 + 2 + 1 =
1,024 + 8 + 4 + 2 + 1 =
1,039(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,039 - 1023 = 16
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
1000 1011 0101 1111 1100 0111 0110 1110 0111 0001 1010 1011 1010(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 0 × 2-25 + 1 × 2-26 + 1 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 1 × 2-31 + 0 × 2-32 + 0 × 2-33 + 1 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 1 × 2-40 + 1 × 2-41 + 0 × 2-42 + 1 × 2-43 + 0 × 2-44 + 1 × 2-45 + 0 × 2-46 + 1 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0.5 + 0 + 0 + 0 + 0.031 25 + 0 + 0.007 812 5 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0 + 0 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0 + 0 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.5 + 0.031 25 + 0.007 812 5 + 0.003 906 25 + 0.000 976 562 5 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 007 450 580 596 923 828 125 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.544 430 222 000 001 240 445 499 206 543 900 072 574 615 478 515 625(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.544 430 222 000 001 240 445 499 206 543 900 072 574 615 478 515 625) × 216 =
1.544 430 222 000 001 240 445 499 206 543 900 072 574 615 478 515 625 × 216 = ...
= 101 215.779 028 992 081 293 836 236 000 061 035 156 25
0 - 100 0000 1111 - 1000 1011 0101 1111 1100 0111 0110 1110 0111 0001 1010 1011 1010, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = 101 215.779 028 992 081 293 836 236 000 061 035 156 25(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.