1 - 011 1111 1101 - 0110 0101 1101 1000 0001 1111 0000 1101 1011 0100 1001 0001 1000 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal
1 - 011 1111 1101 - 0110 0101 1101 1000 0001 1111 0000 1101 1011 0100 1001 0001 1000: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
1 - 011 1111 1101 - 0110 0101 1101 1000 0001 1111 0000 1101 1011 0100 1001 0001 1000, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
011 1111 1101
The last 52 bits contain the mantissa:
0110 0101 1101 1000 0001 1111 0000 1101 1011 0100 1001 0001 1000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1111 1101(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 0 + 1 =
512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 1 =
1,021(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,021 - 1023 = -2
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0110 0101 1101 1000 0001 1111 0000 1101 1011 0100 1001 0001 1000(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 + 1 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 1 × 2-29 + 1 × 2-30 + 0 × 2-31 + 1 × 2-32 + 1 × 2-33 + 0 × 2-34 + 1 × 2-35 + 1 × 2-36 + 0 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 1 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 1 × 2-48 + 1 × 2-49 + 0 × 2-50 + 0 × 2-51 + 0 × 2-52 =
0 + 0.25 + 0.125 + 0 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0 + 0 + 0 + 0 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0 + 0 + 0 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 + 0 + 0 + 0 =
0.25 + 0.125 + 0.015 625 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 + 0.000 000 059 604 644 775 390 625 + 0.000 000 001 862 645 149 230 957 031 25 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 029 103 830 456 733 703 613 281 25 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 + 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 =
0.397 828 999 372 512 370 769 072 731 491 178 274 154 663 085 937 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.397 828 999 372 512 370 769 072 731 491 178 274 154 663 085 937 5) × 2-2 =
-1.397 828 999 372 512 370 769 072 731 491 178 274 154 663 085 937 5 × 2-2 = ...
= -0.349 457 249 843 128 092 692 268 182 872 794 568 538 665 771 484 375
1 - 011 1111 1101 - 0110 0101 1101 1000 0001 1111 0000 1101 1011 0100 1001 0001 1000, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = -0.349 457 249 843 128 092 692 268 182 872 794 568 538 665 771 484 375(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.