1 - 011 1111 1100 - 0010 0001 0100 0011 0101 1010 0101 0111 0101 1100 1000 1100 0011 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal
1 - 011 1111 1100 - 0010 0001 0100 0011 0101 1010 0101 0111 0101 1100 1000 1100 0011: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
1 - 011 1111 1100 - 0010 0001 0100 0011 0101 1010 0101 0111 0101 1100 1000 1100 0011, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
011 1111 1100
The last 52 bits contain the mantissa:
0010 0001 0100 0011 0101 1010 0101 0111 0101 1100 1000 1100 0011
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
011 1111 1100(2) =
0 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =
0 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 0 + 0 =
512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 =
1,020(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 1,020 - 1023 = -3
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0010 0001 0100 0011 0101 1010 0101 0111 0101 1100 1000 1100 0011(2) =
0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 1 × 2-23 + 0 × 2-24 + 0 × 2-25 + 1 × 2-26 + 0 × 2-27 + 1 × 2-28 + 0 × 2-29 + 1 × 2-30 + 1 × 2-31 + 1 × 2-32 + 0 × 2-33 + 1 × 2-34 + 0 × 2-35 + 1 × 2-36 + 1 × 2-37 + 1 × 2-38 + 0 × 2-39 + 0 × 2-40 + 1 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0 + 0 + 0.125 + 0 + 0 + 0 + 0 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0 + 0.000 000 119 209 289 550 781 25 + 0 + 0 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0.000 000 003 725 290 298 461 914 062 5 + 0 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0 + 0 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0 + 0 + 0 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.125 + 0.003 906 25 + 0.000 976 562 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 119 209 289 550 781 25 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 003 725 290 298 461 914 062 5 + 0.000 000 000 931 322 574 615 478 515 625 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 232 830 643 653 869 628 906 25 + 0.000 000 000 058 207 660 913 467 407 226 562 5 + 0.000 000 000 014 551 915 228 366 851 806 640 625 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.129 933 973 625 654 841 654 863 957 955 967 634 916 305 541 992 187 5(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.129 933 973 625 654 841 654 863 957 955 967 634 916 305 541 992 187 5) × 2-3 =
-1.129 933 973 625 654 841 654 863 957 955 967 634 916 305 541 992 187 5 × 2-3 = ...
= -0.141 241 746 703 206 855 206 857 994 744 495 954 364 538 192 749 023 437 5
1 - 011 1111 1100 - 0010 0001 0100 0011 0101 1010 0101 0111 0101 1100 1000 1100 0011, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = -0.141 241 746 703 206 855 206 857 994 744 495 954 364 538 192 749 023 437 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.