0 - 000 0000 0100 - 0000 1010 1100 0000 1111 0101 1100 0010 1000 1111 0101 1100 0010 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal
0 - 000 0000 0100 - 0000 1010 1100 0000 1111 0101 1100 0010 1000 1111 0101 1100 0010: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
0 - 000 0000 0100 - 0000 1010 1100 0000 1111 0101 1100 0010 1000 1111 0101 1100 0010, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 11 bits contain the exponent:
000 0000 0100
The last 52 bits contain the mantissa:
0000 1010 1100 0000 1111 0101 1100 0010 1000 1111 0101 1100 0010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
000 0000 0100(2) =
0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 0 × 20 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 4 + 0 + 0 =
4 =
4(10)
3. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 4 - 1023 = -1019
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0000 1010 1100 0000 1111 0101 1100 0010 1000 1111 0101 1100 0010(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 + 1 × 2-24 + 1 × 2-25 + 1 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 1 × 2-31 + 0 × 2-32 + 1 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 1 × 2-37 + 1 × 2-38 + 1 × 2-39 + 1 × 2-40 + 0 × 2-41 + 1 × 2-42 + 0 × 2-43 + 1 × 2-44 + 1 × 2-45 + 1 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 0 × 2-50 + 1 × 2-51 + 0 × 2-52 =
0 + 0 + 0 + 0 + 0.031 25 + 0 + 0.007 812 5 + 0 + 0.001 953 125 + 0.000 976 562 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0 + 0 + 0 + 0 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0 + 0 + 0 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0 =
0.031 25 + 0.007 812 5 + 0.001 953 125 + 0.000 976 562 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 059 604 644 775 390 625 + 0.000 000 029 802 322 387 695 312 5 + 0.000 000 014 901 161 193 847 656 25 + 0.000 000 000 465 661 287 307 739 257 812 5 + 0.000 000 000 116 415 321 826 934 814 453 125 + 0.000 000 000 007 275 957 614 183 425 903 320 312 5 + 0.000 000 000 003 637 978 807 091 712 951 660 156 25 + 0.000 000 000 001 818 989 403 545 856 475 830 078 125 + 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 + 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 + 0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 + 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 + 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 =
0.042 006 835 937 499 875 655 021 241 982 467 472 553 253 173 828 125(10)
5. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)0 × (1 + 0.042 006 835 937 499 875 655 021 241 982 467 472 553 253 173 828 125) × 2-1019 =
1.042 006 835 937 499 875 655 021 241 982 467 472 553 253 173 828 125 × 2-1019 = ...
= 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 1
0 - 000 0000 0100 - 0000 1010 1100 0000 1111 0101 1100 0010 1000 1111 0101 1100 0010, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 1(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.