1 - 000 0000 0000 - 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0111 64 Bit Double Precision IEEE 754 Binary Floating Point Representation Standard Converted to Decimal
1 - 000 0000 0000 - 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0111: 64 bit double precision IEEE 754 binary floating point representation standard converted to decimal
What are the steps to convert
1 - 000 0000 0000 - 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0111, a 64 bit double precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 11 bits contain the exponent:
000 0000 0000
The last 52 bits contain the mantissa:
0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0111
2. Reserved bitpattern.
Notice that all the bits that make up the exponent are on 0 (clear) and at least one bit of the mantissa is set on 1 (set).
This is one of the reserved bitpatterns of the special values of: Denormalized.
Denormalized numbers are too small to be correctly represented so they approximate to zero.
Depending on the sign bit, -0 and +0 are two distinct values though they both compare as equal (0).
3. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
000 0000 0000(2) =
0 × 210 + 0 × 29 + 0 × 28 + 0 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 =
0(10)
4. Adjust the exponent.
Subtract the excess bits: 2(11 - 1) - 1 = 1023,
that is due to the 11 bit excess/bias notation.
The exponent, adjusted = 0 - 1023 = -1023
5. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0111(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 0 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 + 0 × 2-24 + 0 × 2-25 + 0 × 2-26 + 0 × 2-27 + 0 × 2-28 + 0 × 2-29 + 0 × 2-30 + 0 × 2-31 + 0 × 2-32 + 0 × 2-33 + 0 × 2-34 + 0 × 2-35 + 0 × 2-36 + 0 × 2-37 + 0 × 2-38 + 0 × 2-39 + 0 × 2-40 + 0 × 2-41 + 0 × 2-42 + 0 × 2-43 + 0 × 2-44 + 0 × 2-45 + 0 × 2-46 + 0 × 2-47 + 0 × 2-48 + 0 × 2-49 + 1 × 2-50 + 1 × 2-51 + 1 × 2-52 =
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.000 015 258 789 062 5 + 0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 + 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 + 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 =
0.000 015 258 789 064 054 312 234 475 219 156 593 084 335 327 148 437 5(10)
6. Put all the numbers into expression to calculate the double precision floating point decimal value:
(-1)Sign × (1 + Mantissa) × 2(Adjusted exponent) =
(-1)1 × (1 + 0.000 015 258 789 064 054 312 234 475 219 156 593 084 335 327 148 437 5) × 2-1023 =
-1.000 015 258 789 064 054 312 234 475 219 156 593 084 335 327 148 437 5 × 2-1023 = ...
= -0
1 - 000 0000 0000 - 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000 0111, a 64 bit double precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (double) = -0(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.