What are the steps to convert
1 - 1111 0111 - 111 1111 1111 1111 1011 1100, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1111 0111
The last 23 bits contain the mantissa:
111 1111 1111 1111 1011 1100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1111 0111(2) =
1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20 =
128 + 64 + 32 + 16 + 0 + 4 + 2 + 1 =
128 + 64 + 32 + 16 + 4 + 2 + 1 =
247(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 247 - 127 = 120
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
111 1111 1111 1111 1011 1100(2) =
1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0 + 0 =
0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 =
0.999 991 893 768 310 546 875(10)
= -2 658 445 216 539 729 805 857 701 398 583 443 456
1 - 1111 0111 - 111 1111 1111 1111 1011 1100, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -2 658 445 216 539 729 805 857 701 398 583 443 456(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.