What are the steps to convert
1 - 1111 0110 - 111 1100 1000 1101 1110 0100, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1111 0110
The last 23 bits contain the mantissa:
111 1100 1000 1101 1110 0100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1111 0110(2) =
1 × 27 + 1 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
128 + 64 + 32 + 16 + 0 + 4 + 2 + 0 =
128 + 64 + 32 + 16 + 4 + 2 =
246(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 246 - 127 = 119
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
111 1100 1000 1101 1110 0100(2) =
1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0 + 0 + 0.003 906 25 + 0 + 0 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0 =
0.5 + 0.25 + 0.125 + 0.062 5 + 0.031 25 + 0.003 906 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 000 476 837 158 203 125 =
0.973 080 158 233 642 578 125(10)
= -1 311 336 692 125 944 700 188 432 965 415 469 056
1 - 1111 0110 - 111 1100 1000 1101 1110 0100, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -1 311 336 692 125 944 700 188 432 965 415 469 056(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.