What are the steps to convert
1 - 1100 0000 - 111 0011 0100 0000 0010 1111, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1100 0000
The last 23 bits contain the mantissa:
111 0011 0100 0000 0010 1111
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1100 0000(2) =
1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
128 + 64 + 0 + 0 + 0 + 0 + 0 + 0 =
128 + 64 =
192(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 192 - 127 = 65
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
111 0011 0100 0000 0010 1111(2) =
1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 =
0.5 + 0.25 + 0.125 + 0 + 0 + 0.015 625 + 0.007 812 5 + 0 + 0.001 953 125 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 003 814 697 265 625 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.25 + 0.125 + 0.015 625 + 0.007 812 5 + 0.001 953 125 + 0.000 003 814 697 265 625 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.900 396 227 836 608 886 718 75(10)
= -70 112 245 707 089 903 616
1 - 1100 0000 - 111 0011 0100 0000 0010 1111, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -70 112 245 707 089 903 616(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.