What are the steps to convert
0 - 1011 1010 - 101 1101 0000 1111 1111 1110, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1011 1010
The last 23 bits contain the mantissa:
101 1101 0000 1111 1111 1110
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1011 1010(2) =
1 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 32 + 16 + 8 + 0 + 2 + 0 =
128 + 32 + 16 + 8 + 2 =
186(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 186 - 127 = 59
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
101 1101 0000 1111 1111 1110(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0.5 + 0 + 0.125 + 0.062 5 + 0.031 25 + 0 + 0.007 812 5 + 0 + 0 + 0 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0 =
0.5 + 0.125 + 0.062 5 + 0.031 25 + 0.007 812 5 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 =
0.727 050 542 831 420 898 437 5(10)
= 995 576 855 186 636 800
0 - 1011 1010 - 101 1101 0000 1111 1111 1110, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 995 576 855 186 636 800(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.