What are the steps to convert
0 - 1010 0011 - 011 1010 0100 0011 1101 1011, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1010 0011
The last 23 bits contain the mantissa:
011 1010 0100 0011 1101 1011
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1010 0011(2) =
1 × 27 + 0 × 26 + 1 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
128 + 0 + 32 + 0 + 0 + 0 + 2 + 1 =
128 + 32 + 2 + 1 =
163(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 163 - 127 = 36
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
011 1010 0100 0011 1101 1011(2) =
0 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 =
0 + 0.25 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0 + 0 + 0.001 953 125 + 0 + 0 + 0 + 0 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.25 + 0.125 + 0.062 5 + 0.015 625 + 0.001 953 125 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.455 195 784 568 786 621 093 75(10)
= 100 000 292 864
0 - 1010 0011 - 011 1010 0100 0011 1101 1011, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 100 000 292 864(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.