What are the steps to convert
1 - 1001 0110 - 111 1010 1011 1000 1010 0101, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1001 0110
The last 23 bits contain the mantissa:
111 1010 1011 1000 1010 0101
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1001 0110(2) =
1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 16 + 0 + 4 + 2 + 0 =
128 + 16 + 4 + 2 =
150(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 150 - 127 = 23
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
111 1010 1011 1000 1010 0101(2) =
1 × 2-1 + 1 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0.5 + 0.25 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.25 + 0.125 + 0.062 5 + 0.015 625 + 0.003 906 25 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 476 837 158 203 125 + 0.000 000 119 209 289 550 781 25 =
0.958 759 903 907 775 878 906 25(10)
= -16 431 269
1 - 1001 0110 - 111 1010 1011 1000 1010 0101, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -16 431 269(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.