What are the steps to convert
1 - 1001 0010 - 100 1011 0000 1111 1011 0001, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1001 0010
The last 23 bits contain the mantissa:
100 1011 0000 1111 1011 0001
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1001 0010(2) =
1 × 27 + 0 × 26 + 0 × 25 + 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 16 + 0 + 0 + 2 + 0 =
128 + 16 + 2 =
146(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 146 - 127 = 19
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
100 1011 0000 1111 1011 0001(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0.5 + 0 + 0 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0 + 0 + 0 + 0 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0 + 0 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.062 5 + 0.015 625 + 0.007 812 5 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 119 209 289 550 781 25 =
0.586 416 363 716 125 488 281 25(10)
= -831 739.062 5
1 - 1001 0010 - 100 1011 0000 1111 1011 0001, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -831 739.062 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.