What are the steps to convert
0 - 1000 1011 - 101 1010 1000 0000 1010 1010, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 1011
The last 23 bits contain the mantissa:
101 1010 1000 0000 1010 1010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 1011(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
128 + 0 + 0 + 0 + 8 + 0 + 2 + 1 =
128 + 8 + 2 + 1 =
139(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 139 - 127 = 12
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
101 1010 1000 0000 1010 1010(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0.5 + 0 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 =
0.5 + 0.125 + 0.062 5 + 0.015 625 + 0.003 906 25 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 =
0.707 051 515 579 223 632 812 5(10)
= 6 992.083 007 812 5
0 - 1000 1011 - 101 1010 1000 0000 1010 1010, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 6 992.083 007 812 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.