What are the steps to convert
0 - 1000 1001 - 101 1011 0101 1010 1101 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 1001
The last 23 bits contain the mantissa:
101 1011 0101 1010 1101 1000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 1001(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 =
128 + 8 + 1 =
137(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 137 - 127 = 10
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
101 1011 0101 1010 1101 1000(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 1 × 2-11 + 1 × 2-12 + 0 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0.007 812 5 + 0 + 0.001 953 125 + 0 + 0.000 488 281 25 + 0.000 244 140 625 + 0 + 0.000 061 035 156 25 + 0 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0 =
0.5 + 0.125 + 0.062 5 + 0.015 625 + 0.007 812 5 + 0.001 953 125 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 061 035 156 25 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 =
0.713 709 831 237 792 968 75(10)
= 1 754.838 867 187 5
0 - 1000 1001 - 101 1011 0101 1010 1101 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 1 754.838 867 187 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.