What are the steps to convert
1 - 1000 1001 - 001 1010 1011 1100 0000 1101, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1000 1001
The last 23 bits contain the mantissa:
001 1010 1011 1100 0000 1101
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 1001(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 1 × 20 =
128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 =
128 + 8 + 1 =
137(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 137 - 127 = 10
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
001 1010 1011 1100 0000 1101(2) =
0 × 2-1 + 0 × 2-2 + 1 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0 + 0 + 0.125 + 0.062 5 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0 + 0.000 000 119 209 289 550 781 25 =
0.125 + 0.062 5 + 0.015 625 + 0.003 906 25 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 119 209 289 550 781 25 =
0.208 863 854 408 264 160 156 25(10)
= -1 237.876 586 914 062 5
1 - 1000 1001 - 001 1010 1011 1100 0000 1101, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -1 237.876 586 914 062 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.