What are the steps to convert
0 - 1000 1000 - 100 1000 0001 0000 0000 1011, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 1000
The last 23 bits contain the mantissa:
100 1000 0001 0000 0000 1011
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 1000(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 0 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 8 + 0 + 0 + 0 =
128 + 8 =
136(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 136 - 127 = 9
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
100 1000 0001 0000 0000 1011(2) =
1 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 1 × 2-23 =
0.5 + 0 + 0 + 0.062 5 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.062 5 + 0.000 488 281 25 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.562 989 592 552 185 058 593 75(10)
= 800.250 671 386 718 75
0 - 1000 1000 - 100 1000 0001 0000 0000 1011, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 800.250 671 386 718 75(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.