What are the steps to convert
1 - 1000 0110 - 101 0111 0111 1111 1100 0001, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1000 0110
The last 23 bits contain the mantissa:
101 0111 0111 1111 1100 0001
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0110(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 4 + 2 + 0 =
128 + 4 + 2 =
134(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 134 - 127 = 7
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
101 0111 0111 1111 1100 0001(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 0 × 2-8 + 1 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 0 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0.5 + 0 + 0.125 + 0 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0 + 0 + 0 + 0 + 0 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.125 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.001 953 125 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 000 119 209 289 550 781 25 =
0.683 586 239 814 758 300 781 25(10)
= -215.499 038 696 289 062 5
1 - 1000 0110 - 101 0111 0111 1111 1100 0001, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -215.499 038 696 289 062 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.