What are the steps to convert
1 - 1000 0110 - 101 0010 1001 0000 0000 0101, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
1
The next 8 bits contain the exponent:
1000 0110
The last 23 bits contain the mantissa:
101 0010 1001 0000 0000 0101
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0110(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 4 + 2 + 0 =
128 + 4 + 2 =
134(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 134 - 127 = 7
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
101 0010 1001 0000 0000 0101(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 1 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 0 × 2-12 + 0 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 0 × 2-17 + 0 × 2-18 + 0 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 1 × 2-23 =
0.5 + 0 + 0.125 + 0 + 0 + 0.015 625 + 0 + 0.003 906 25 + 0 + 0 + 0.000 488 281 25 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.125 + 0.015 625 + 0.003 906 25 + 0.000 488 281 25 + 0.000 000 476 837 158 203 125 + 0.000 000 119 209 289 550 781 25 =
0.645 020 127 296 447 753 906 25(10)
= -210.562 576 293 945 312 5
1 - 1000 0110 - 101 0010 1001 0000 0000 0101, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = -210.562 576 293 945 312 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.