What are the steps to convert
0 - 1000 0110 - 000 1111 1011 1100 0100 1010, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 0110
The last 23 bits contain the mantissa:
000 1111 1011 1100 0100 1010
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0110(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 4 + 2 + 0 =
128 + 4 + 2 =
134(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 134 - 127 = 7
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
000 1111 1011 1100 0100 1010(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 1 × 2-6 + 1 × 2-7 + 1 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 0 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 1 × 2-22 + 0 × 2-23 =
0 + 0 + 0 + 0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0 + 0 + 0.000 007 629 394 531 25 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0.000 000 238 418 579 101 562 5 + 0 =
0.062 5 + 0.031 25 + 0.015 625 + 0.007 812 5 + 0.003 906 25 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 007 629 394 531 25 + 0.000 000 953 674 316 406 25 + 0.000 000 238 418 579 101 562 5 =
0.122 933 626 174 926 757 812 5(10)
= 143.735 504 150 390 625
0 - 1000 0110 - 000 1111 1011 1100 0100 1010, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 143.735 504 150 390 625(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.