What are the steps to convert
0 - 1000 0101 - 000 1100 0011 1111 1111 0100, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 0101
The last 23 bits contain the mantissa:
000 1100 0011 1111 1111 0100
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0101(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 =
128 + 0 + 0 + 0 + 0 + 4 + 0 + 1 =
128 + 4 + 1 =
133(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 133 - 127 = 6
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
000 1100 0011 1111 1111 0100(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 1 × 2-5 + 0 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 1 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 1 × 2-19 + 0 × 2-20 + 1 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0 + 0 + 0 + 0.062 5 + 0.031 25 + 0 + 0 + 0 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0 + 0.000 000 476 837 158 203 125 + 0 + 0 =
0.062 5 + 0.031 25 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 476 837 158 203 125 =
0.095 701 694 488 525 390 625(10)
= 70.124 908 447 265 625
0 - 1000 0101 - 000 1100 0011 1111 1111 0100, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 70.124 908 447 265 625(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.