What are the steps to convert
0 - 1000 0011 - 101 0110 0100 0101 1011 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 0011
The last 23 bits contain the mantissa:
101 0110 0100 0101 1011 1000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0011(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
128 + 0 + 0 + 0 + 0 + 0 + 2 + 1 =
128 + 2 + 1 =
131(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 131 - 127 = 4
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
101 0110 0100 0101 1011 1000(2) =
1 × 2-1 + 0 × 2-2 + 1 × 2-3 + 0 × 2-4 + 1 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 1 × 2-9 + 0 × 2-10 + 0 × 2-11 + 0 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 1 × 2-16 + 0 × 2-17 + 1 × 2-18 + 1 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0.5 + 0 + 0.125 + 0 + 0.031 25 + 0.015 625 + 0 + 0 + 0.001 953 125 + 0 + 0 + 0 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0 =
0.5 + 0.125 + 0.031 25 + 0.015 625 + 0.001 953 125 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 015 258 789 062 5 + 0.000 003 814 697 265 625 + 0.000 001 907 348 632 812 5 + 0.000 000 953 674 316 406 25 =
0.674 002 647 399 902 343 75(10)
= 26.784 042 358 398 437 5
0 - 1000 0011 - 101 0110 0100 0101 1011 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 26.784 042 358 398 437 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.