What are the steps to convert
0 - 1000 0011 - 000 1010 0001 1110 1110 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 0011
The last 23 bits contain the mantissa:
000 1010 0001 1110 1110 1000
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0011(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 =
128 + 0 + 0 + 0 + 0 + 0 + 2 + 1 =
128 + 2 + 1 =
131(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 131 - 127 = 4
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
000 1010 0001 1110 1110 1000(2) =
0 × 2-1 + 0 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 0 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 1 × 2-14 + 0 × 2-15 + 1 × 2-16 + 1 × 2-17 + 1 × 2-18 + 0 × 2-19 + 1 × 2-20 + 0 × 2-21 + 0 × 2-22 + 0 × 2-23 =
0 + 0 + 0 + 0.062 5 + 0 + 0.015 625 + 0 + 0 + 0 + 0 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0 + 0.000 000 953 674 316 406 25 + 0 + 0 + 0 =
0.062 5 + 0.015 625 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 061 035 156 25 + 0.000 015 258 789 062 5 + 0.000 007 629 394 531 25 + 0.000 003 814 697 265 625 + 0.000 000 953 674 316 406 25 =
0.079 068 183 898 925 781 25(10)
= 17.265 090 942 382 812 5
0 - 1000 0011 - 000 1010 0001 1110 1110 1000, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 17.265 090 942 382 812 5(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.