What are the steps to convert
0 - 1000 0010 - 110 1010 0011 1101 0100 1111, a 32 bit single precision IEEE 754 binary floating point representation standard to decimal?
1. Identify the elements that make up the binary representation of the number:
The first bit (the leftmost) indicates the sign,
1 = negative, 0 = positive.
0
The next 8 bits contain the exponent:
1000 0010
The last 23 bits contain the mantissa:
110 1010 0011 1101 0100 1111
2. Convert the exponent from binary (from base 2) to decimal (in base 10).
The exponent is allways a positive integer.
1000 0010(2) =
1 × 27 + 0 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 0 × 20 =
128 + 0 + 0 + 0 + 0 + 0 + 2 + 0 =
128 + 2 =
130(10)
3. Adjust the exponent.
Subtract the excess bits: 2(8 - 1) - 1 = 127,
that is due to the 8 bit excess/bias notation.
The exponent, adjusted = 130 - 127 = 3
4. Convert the mantissa from binary (from base 2) to decimal (in base 10).
The mantissa represents the fractional part of the number (what comes after the whole part of the number, separated from it by a comma).
110 1010 0011 1101 0100 1111(2) =
1 × 2-1 + 1 × 2-2 + 0 × 2-3 + 1 × 2-4 + 0 × 2-5 + 1 × 2-6 + 0 × 2-7 + 0 × 2-8 + 0 × 2-9 + 1 × 2-10 + 1 × 2-11 + 1 × 2-12 + 1 × 2-13 + 0 × 2-14 + 1 × 2-15 + 0 × 2-16 + 1 × 2-17 + 0 × 2-18 + 0 × 2-19 + 1 × 2-20 + 1 × 2-21 + 1 × 2-22 + 1 × 2-23 =
0.5 + 0.25 + 0 + 0.062 5 + 0 + 0.015 625 + 0 + 0 + 0 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0 + 0.000 030 517 578 125 + 0 + 0.000 007 629 394 531 25 + 0 + 0 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.5 + 0.25 + 0.062 5 + 0.015 625 + 0.000 976 562 5 + 0.000 488 281 25 + 0.000 244 140 625 + 0.000 122 070 312 5 + 0.000 030 517 578 125 + 0.000 007 629 394 531 25 + 0.000 000 953 674 316 406 25 + 0.000 000 476 837 158 203 125 + 0.000 000 238 418 579 101 562 5 + 0.000 000 119 209 289 550 781 25 =
0.829 995 989 799 499 511 718 75(10)
= 14.639 967 918 395 996 093 75
0 - 1000 0010 - 110 1010 0011 1101 0100 1111, a 32 bit single precision IEEE 754 binary floating point representation standard to a decimal number, written in base ten (float) = 14.639 967 918 395 996 093 75(10)
Spaces were used to group digits: for binary, by 4, for decimal, by 3.